L(s) = 1 | + (−0.258 − 0.965i)3-s + (−2.21 − 0.285i)5-s + (0.311 − 2.62i)7-s + (−0.866 + 0.499i)9-s + (−2.32 + 4.02i)11-s + (−2.59 + 2.59i)13-s + (0.298 + 2.21i)15-s + (−1.24 + 0.333i)17-s + (3.67 + 6.36i)19-s + (−2.61 + 0.378i)21-s + (0.610 − 2.27i)23-s + (4.83 + 1.26i)25-s + (0.707 + 0.707i)27-s − 6.66i·29-s + (6.71 + 3.87i)31-s + ⋯ |
L(s) = 1 | + (−0.149 − 0.557i)3-s + (−0.991 − 0.127i)5-s + (0.117 − 0.993i)7-s + (−0.288 + 0.166i)9-s + (−0.701 + 1.21i)11-s + (−0.718 + 0.718i)13-s + (0.0770 + 0.572i)15-s + (−0.301 + 0.0808i)17-s + (0.842 + 1.45i)19-s + (−0.571 + 0.0826i)21-s + (0.127 − 0.474i)23-s + (0.967 + 0.253i)25-s + (0.136 + 0.136i)27-s − 1.23i·29-s + (1.20 + 0.696i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.460393 + 0.396303i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.460393 + 0.396303i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.258 + 0.965i)T \) |
| 5 | \( 1 + (2.21 + 0.285i)T \) |
| 7 | \( 1 + (-0.311 + 2.62i)T \) |
good | 11 | \( 1 + (2.32 - 4.02i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.59 - 2.59i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.24 - 0.333i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.67 - 6.36i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.610 + 2.27i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 6.66iT - 29T^{2} \) |
| 31 | \( 1 + (-6.71 - 3.87i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.82 - 1.29i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 8.39iT - 41T^{2} \) |
| 43 | \( 1 + (7.18 + 7.18i)T + 43iT^{2} \) |
| 47 | \( 1 + (3.21 - 12.0i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (2.49 - 0.667i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (7.62 - 13.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.16 - 1.82i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.35 - 12.5i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 5.54T + 71T^{2} \) |
| 73 | \( 1 + (2.10 + 7.84i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (4.53 - 2.62i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.84 - 1.84i)T - 83iT^{2} \) |
| 89 | \( 1 + (6.67 + 11.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (9.98 + 9.98i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28801905102638311512121881112, −9.791795801128431969115581480737, −8.394245084193225510294987697922, −7.62418901065433446222057877331, −7.26701883401940538166989431099, −6.24165364788247976758160949553, −4.73988163541293529952822677724, −4.30689654797971962176537429639, −2.87569821067381417344871224163, −1.38767637284350730306368468236,
0.31718981053224022863381517638, 2.75960625174054794818946531111, 3.34164466247138766110145565798, 4.86848152148612043809046215519, 5.29880882109087551986373522054, 6.49787404982910956179418060856, 7.62891125447797660328058431074, 8.363824927481322384246418072063, 9.083350530036500202008985287908, 10.02814844616555968652742592966