L(s) = 1 | + (0.965 − 0.258i)3-s + (2.13 − 0.652i)5-s + (−2.13 + 1.55i)7-s + (0.866 − 0.499i)9-s + (2.71 − 4.69i)11-s + (−4.87 − 4.87i)13-s + (1.89 − 1.18i)15-s + (−1.79 − 6.70i)17-s + (1.02 + 1.77i)19-s + (−1.66 + 2.05i)21-s + (5.67 + 1.52i)23-s + (4.14 − 2.79i)25-s + (0.707 − 0.707i)27-s + 5.88i·29-s + (7.01 + 4.04i)31-s + ⋯ |
L(s) = 1 | + (0.557 − 0.149i)3-s + (0.956 − 0.292i)5-s + (−0.808 + 0.588i)7-s + (0.288 − 0.166i)9-s + (0.817 − 1.41i)11-s + (−1.35 − 1.35i)13-s + (0.489 − 0.305i)15-s + (−0.435 − 1.62i)17-s + (0.234 + 0.406i)19-s + (−0.362 + 0.449i)21-s + (1.18 + 0.317i)23-s + (0.829 − 0.558i)25-s + (0.136 − 0.136i)27-s + 1.09i·29-s + (1.25 + 0.727i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.73871 - 0.963605i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.73871 - 0.963605i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.965 + 0.258i)T \) |
| 5 | \( 1 + (-2.13 + 0.652i)T \) |
| 7 | \( 1 + (2.13 - 1.55i)T \) |
good | 11 | \( 1 + (-2.71 + 4.69i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (4.87 + 4.87i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.79 + 6.70i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.02 - 1.77i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.67 - 1.52i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 5.88iT - 29T^{2} \) |
| 31 | \( 1 + (-7.01 - 4.04i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.108 - 0.406i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 3.34iT - 41T^{2} \) |
| 43 | \( 1 + (-3.69 + 3.69i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.806 - 0.216i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-0.502 - 1.87i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (4.69 - 8.12i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.93 - 4.00i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (9.66 - 2.58i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 0.152T + 71T^{2} \) |
| 73 | \( 1 + (-4.37 + 1.17i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-4.88 + 2.82i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.533 + 0.533i)T + 83iT^{2} \) |
| 89 | \( 1 + (-0.318 - 0.552i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.20 - 2.20i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.854728279948417893269608006176, −9.127828744831070399365287147347, −8.725298802990515765725070188007, −7.45770892921789484925968504584, −6.58513553895861276521060871092, −5.65350006438257690215424168696, −4.91037453027833284592210784832, −3.06085573545124881866955789885, −2.79368375668675812151697370225, −0.953927149488673951381708777216,
1.76578788504587043995033766783, 2.64541603956352108225801136401, 4.09169692961501402302934776766, 4.70896218799320765539737235509, 6.35703521472593592285646322925, 6.76988851162287712729369638369, 7.61078180543088194909387998236, 9.039453479529042720771698331224, 9.565473522574294474518914798848, 10.00650582052408699040138304092