L(s) = 1 | + (−0.965 − 0.258i)3-s + (1.42 − 1.72i)5-s + (2.63 − 0.206i)7-s + (0.866 + 0.499i)9-s + (2.47 + 4.29i)11-s + (0.0756 − 0.0756i)13-s + (−1.82 + 1.29i)15-s + (−0.738 + 2.75i)17-s + (−1.59 + 2.75i)19-s + (−2.60 − 0.483i)21-s + (7.11 − 1.90i)23-s + (−0.950 − 4.90i)25-s + (−0.707 − 0.707i)27-s − 9.21i·29-s + (−4.33 + 2.50i)31-s + ⋯ |
L(s) = 1 | + (−0.557 − 0.149i)3-s + (0.636 − 0.771i)5-s + (0.996 − 0.0779i)7-s + (0.288 + 0.166i)9-s + (0.746 + 1.29i)11-s + (0.0209 − 0.0209i)13-s + (−0.470 + 0.335i)15-s + (−0.179 + 0.668i)17-s + (−0.365 + 0.632i)19-s + (−0.567 − 0.105i)21-s + (1.48 − 0.397i)23-s + (−0.190 − 0.981i)25-s + (−0.136 − 0.136i)27-s − 1.71i·29-s + (−0.779 + 0.449i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69129 - 0.208117i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69129 - 0.208117i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.965 + 0.258i)T \) |
| 5 | \( 1 + (-1.42 + 1.72i)T \) |
| 7 | \( 1 + (-2.63 + 0.206i)T \) |
good | 11 | \( 1 + (-2.47 - 4.29i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.0756 + 0.0756i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.738 - 2.75i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.59 - 2.75i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-7.11 + 1.90i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 9.21iT - 29T^{2} \) |
| 31 | \( 1 + (4.33 - 2.50i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.118 - 0.440i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 7.00iT - 41T^{2} \) |
| 43 | \( 1 + (-5.76 - 5.76i)T + 43iT^{2} \) |
| 47 | \( 1 + (-6.57 + 1.76i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-2.19 + 8.19i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.25 - 2.17i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (8.22 + 4.74i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.63 + 0.706i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 11.8T + 71T^{2} \) |
| 73 | \( 1 + (-2.37 - 0.637i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (11.3 + 6.52i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.25 - 6.25i)T - 83iT^{2} \) |
| 89 | \( 1 + (-7.45 + 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.25 + 3.25i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15252668585296119381513328261, −9.374568818991678293489760696398, −8.507658558771933405555910631981, −7.61623484474249444787067374784, −6.61705009032597534601498114731, −5.73884467859863723780489837284, −4.75597988400113900245474773910, −4.21097665255419938871494031648, −2.12650790793644005504387203830, −1.25310138928065460750242799863,
1.19152519864596521393248533049, 2.66024849310327137821063067734, 3.84106671398829494918253355826, 5.14825308439071607377520136910, 5.73177885698275873286158964765, 6.80619654226060354546448048727, 7.40987704486286465450460248539, 8.946431223865751646021879589707, 9.117245130778461257852678612839, 10.70016315923391459581314059792