L(s) = 1 | + (−1.40 + 0.126i)2-s + (1.11 − 1.32i)3-s + (1.96 − 0.355i)4-s + (1.61 − 1.54i)5-s + (−1.39 + 2.01i)6-s + (−2.64 − 0.163i)7-s + (−2.72 + 0.749i)8-s + (−0.534 − 2.95i)9-s + (−2.07 + 2.38i)10-s + (−2.26 + 3.92i)11-s + (1.71 − 3.01i)12-s + (0.229 − 0.229i)13-s + (3.74 − 0.103i)14-s + (−0.262 − 3.86i)15-s + (3.74 − 1.39i)16-s + (−6.05 + 1.62i)17-s + ⋯ |
L(s) = 1 | + (−0.996 + 0.0892i)2-s + (0.641 − 0.767i)3-s + (0.984 − 0.177i)4-s + (0.722 − 0.691i)5-s + (−0.569 + 0.821i)6-s + (−0.998 − 0.0617i)7-s + (−0.964 + 0.264i)8-s + (−0.178 − 0.983i)9-s + (−0.657 + 0.753i)10-s + (−0.682 + 1.18i)11-s + (0.494 − 0.869i)12-s + (0.0636 − 0.0636i)13-s + (0.999 − 0.0275i)14-s + (−0.0678 − 0.997i)15-s + (0.936 − 0.349i)16-s + (−1.46 + 0.393i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.983 + 0.179i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.983 + 0.179i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0550298 - 0.606801i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0550298 - 0.606801i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 - 0.126i)T \) |
| 3 | \( 1 + (-1.11 + 1.32i)T \) |
| 5 | \( 1 + (-1.61 + 1.54i)T \) |
| 7 | \( 1 + (2.64 + 0.163i)T \) |
good | 11 | \( 1 + (2.26 - 3.92i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.229 + 0.229i)T - 13iT^{2} \) |
| 17 | \( 1 + (6.05 - 1.62i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (3.28 + 5.68i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.55 + 1.48i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 0.429iT - 29T^{2} \) |
| 31 | \( 1 + (-2.50 + 4.34i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.269 - 1.00i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 2.07iT - 41T^{2} \) |
| 43 | \( 1 + (1.23 - 1.23i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.96 + 7.33i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-11.2 + 3.00i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (1.56 + 0.902i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-12.1 + 6.99i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.44 + 0.386i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 15.8iT - 71T^{2} \) |
| 73 | \( 1 + (13.7 - 3.68i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (4.85 - 2.80i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.47 + 4.47i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.03 + 6.99i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.18 + 5.18i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.829259371870028501094488221852, −8.767447474550440940834144641539, −8.443597299850765704695262398277, −7.17430443509486664637558514734, −6.65786361789969091278555605044, −5.81758915387087690466553279532, −4.28852433309365830327004410302, −2.52813616867647654584708993080, −2.06394331932831917646689257948, −0.33327187987843865047817979899,
2.16201192198520186196994391854, 2.93541486005199357559390968095, 3.85787565386650423355434058876, 5.68729469568017975447359071048, 6.29628068765250512828179543746, 7.33686148936663963443487369595, 8.403834958136664898640362339805, 8.965008001113818112171992438892, 9.804554676290298121506521997675, 10.46951071170386067059662618371