L(s) = 1 | + (−1.36 − 0.366i)2-s + (0.5 − 0.866i)3-s + (1.73 + i)4-s + (2.23 − 0.133i)5-s + (−1 + 0.999i)6-s + (−1.73 − 2i)7-s + (−1.99 − 2i)8-s + (−0.499 − 0.866i)9-s + (−3.09 − 0.633i)10-s + (−2.59 − 1.5i)11-s + (1.73 − 0.999i)12-s − 3·13-s + (1.63 + 3.36i)14-s + (1 − 1.99i)15-s + (1.99 + 3.46i)16-s + (−3.46 − 2i)17-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.288 − 0.499i)3-s + (0.866 + 0.5i)4-s + (0.998 − 0.0599i)5-s + (−0.408 + 0.408i)6-s + (−0.654 − 0.755i)7-s + (−0.707 − 0.707i)8-s + (−0.166 − 0.288i)9-s + (−0.979 − 0.200i)10-s + (−0.783 − 0.452i)11-s + (0.499 − 0.288i)12-s − 0.832·13-s + (0.436 + 0.899i)14-s + (0.258 − 0.516i)15-s + (0.499 + 0.866i)16-s + (−0.840 − 0.485i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0750i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0176198 + 0.469029i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0176198 + 0.469029i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 + 0.366i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-2.23 + 0.133i)T \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
good | 11 | \( 1 + (2.59 + 1.5i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3T + 13T^{2} \) |
| 17 | \( 1 + (3.46 + 2i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.06 - 3.5i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.06 - 3.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6iT - 29T^{2} \) |
| 31 | \( 1 + (2 - 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 7T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-11.2 + 6.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.5 + 7.79i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (10.3 + 6i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.73 + i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 10T + 71T^{2} \) |
| 73 | \( 1 + (-5.19 - 3i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5 + 8.66i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 10T + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.867288489272200236522634095663, −9.008982612158060167942210404452, −8.128536635372561372471842723733, −7.31780997989384140772343630341, −6.49571060868371265849180943319, −5.73472029360933224878962158526, −4.03577665797536006437863977154, −2.69712436497691054109150035013, −1.94198377503199700096132070601, −0.26361780288178110812720171150,
2.28201596817863885177423932094, 2.53823252430971857122902883068, 4.51123375840236032111205135098, 5.65128034893931087645521653785, 6.31714679676399014605013824632, 7.25722534602679486534162876469, 8.383567873835267701846531689726, 9.130871507460025332583092680156, 9.575965222514707412755374626652, 10.55559239411243392660656191243