L(s) = 1 | + (−0.587 + 1.62i)3-s + (−2.19 + 0.427i)5-s + (−0.571 + 2.58i)7-s + (−2.30 − 1.91i)9-s + (4.72 + 2.72i)11-s − 5.23·13-s + (0.594 − 3.82i)15-s + (2.41 + 1.39i)17-s + (−2.40 + 1.38i)19-s + (−3.87 − 2.44i)21-s + (−3.63 − 6.28i)23-s + (4.63 − 1.87i)25-s + (4.47 − 2.63i)27-s + 1.09i·29-s + (−7.56 − 4.36i)31-s + ⋯ |
L(s) = 1 | + (−0.339 + 0.940i)3-s + (−0.981 + 0.191i)5-s + (−0.215 + 0.976i)7-s + (−0.769 − 0.638i)9-s + (1.42 + 0.822i)11-s − 1.45·13-s + (0.153 − 0.988i)15-s + (0.586 + 0.338i)17-s + (−0.551 + 0.318i)19-s + (−0.845 − 0.534i)21-s + (−0.757 − 1.31i)23-s + (0.926 − 0.375i)25-s + (0.861 − 0.507i)27-s + 0.202i·29-s + (−1.35 − 0.784i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.112428 - 0.265059i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.112428 - 0.265059i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.587 - 1.62i)T \) |
| 5 | \( 1 + (2.19 - 0.427i)T \) |
| 7 | \( 1 + (0.571 - 2.58i)T \) |
good | 11 | \( 1 + (-4.72 - 2.72i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.23T + 13T^{2} \) |
| 17 | \( 1 + (-2.41 - 1.39i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.40 - 1.38i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.63 + 6.28i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 1.09iT - 29T^{2} \) |
| 31 | \( 1 + (7.56 + 4.36i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.14 - 2.39i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.29T + 41T^{2} \) |
| 43 | \( 1 + 5.55iT - 43T^{2} \) |
| 47 | \( 1 + (-7.45 + 4.30i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.859 + 1.48i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.42 - 2.47i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.15 - 1.24i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.75 + 1.59i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.47iT - 71T^{2} \) |
| 73 | \( 1 + (1.39 - 2.41i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.59 - 7.96i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.588iT - 83T^{2} \) |
| 89 | \( 1 + (5.00 + 8.67i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 11.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61894016268556496094203994516, −9.904431262494588583704543066594, −9.118642013657094384963853642565, −8.410522676459462279638643375004, −7.23047685424712779947968455176, −6.38292286591353709201973567731, −5.32039932571290883013768113378, −4.34900996730983733177546232631, −3.66694584323183438937692952499, −2.32743452610454428010610390950,
0.15113727383370575120774900160, 1.43181388560193851562126995179, 3.18731765748956377205665177273, 4.12036562051881766391815740709, 5.26104672267707969970298244551, 6.39933495344544492538127608451, 7.30014629398748162900778291978, 7.59992042008501834400543230183, 8.712050872738629964815345142976, 9.599313133923642734663614881376