L(s) = 1 | + (−0.645 − 1.60i)3-s + (0.5 − 0.866i)5-s + (2.09 − 1.61i)7-s + (−2.16 + 2.07i)9-s + (0.439 − 0.253i)11-s − 3.23i·13-s + (−1.71 − 0.244i)15-s + (−3.31 − 5.73i)17-s + (6.66 + 3.84i)19-s + (−3.94 − 2.33i)21-s + (−0.899 − 0.519i)23-s + (−0.499 − 0.866i)25-s + (4.73 + 2.14i)27-s − 1.87i·29-s + (−3.00 + 1.73i)31-s + ⋯ |
L(s) = 1 | + (−0.372 − 0.927i)3-s + (0.223 − 0.387i)5-s + (0.793 − 0.608i)7-s + (−0.722 + 0.691i)9-s + (0.132 − 0.0765i)11-s − 0.897i·13-s + (−0.442 − 0.0631i)15-s + (−0.803 − 1.39i)17-s + (1.52 + 0.882i)19-s + (−0.860 − 0.509i)21-s + (−0.187 − 0.108i)23-s + (−0.0999 − 0.173i)25-s + (0.910 + 0.412i)27-s − 0.348i·29-s + (−0.539 + 0.311i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.613 + 0.789i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.613 + 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.591877 - 1.21024i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.591877 - 1.21024i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.645 + 1.60i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-2.09 + 1.61i)T \) |
good | 11 | \( 1 + (-0.439 + 0.253i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.23iT - 13T^{2} \) |
| 17 | \( 1 + (3.31 + 5.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.66 - 3.84i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.899 + 0.519i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 1.87iT - 29T^{2} \) |
| 31 | \( 1 + (3.00 - 1.73i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.777 + 1.34i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.119T + 41T^{2} \) |
| 43 | \( 1 + 10.8T + 43T^{2} \) |
| 47 | \( 1 + (-2.36 + 4.09i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (8.82 - 5.09i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.706 + 1.22i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (8.40 + 4.85i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.88 - 4.99i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.05iT - 71T^{2} \) |
| 73 | \( 1 + (-8.86 + 5.11i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.36 + 4.09i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 4.07T + 83T^{2} \) |
| 89 | \( 1 + (4.41 - 7.63i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 9.08iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.968504608544967863055530357453, −8.951436050193784705588259535463, −7.908749050716771718360424437193, −7.50681943194219959803616050657, −6.48404136855828571763547811119, −5.40014036248110292395455381908, −4.83251358296724461238343865503, −3.26637015559634750091923118112, −1.86213267715008817861107973396, −0.71047426290069917178498678753,
1.80825597272515342252545174986, 3.18439935737929716845377714032, 4.32295204496624982505935404406, 5.12574492037336050561961964476, 6.02919151998023486954318757832, 6.89868747277368052359774902946, 8.145215474297775152510232143152, 9.025065083083383030075691736775, 9.590992781544921082273817990436, 10.58291930035595011884085202028