L(s) = 1 | + (−0.789 − 1.54i)3-s + (0.5 + 0.866i)5-s + (−2.25 − 1.37i)7-s + (−1.75 + 2.43i)9-s + (3.85 + 2.22i)11-s + 5.71i·13-s + (0.940 − 1.45i)15-s + (0.510 − 0.884i)17-s + (4.42 − 2.55i)19-s + (−0.338 + 4.57i)21-s + (−0.712 + 0.411i)23-s + (−0.499 + 0.866i)25-s + (5.13 + 0.781i)27-s − 2.90i·29-s + (7.35 + 4.24i)31-s + ⋯ |
L(s) = 1 | + (−0.455 − 0.890i)3-s + (0.223 + 0.387i)5-s + (−0.854 − 0.520i)7-s + (−0.584 + 0.811i)9-s + (1.16 + 0.671i)11-s + 1.58i·13-s + (0.242 − 0.375i)15-s + (0.123 − 0.214i)17-s + (1.01 − 0.586i)19-s + (−0.0738 + 0.997i)21-s + (−0.148 + 0.0857i)23-s + (−0.0999 + 0.173i)25-s + (0.988 + 0.150i)27-s − 0.538i·29-s + (1.32 + 0.762i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0528i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0528i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.27554 + 0.0337271i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.27554 + 0.0337271i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.789 + 1.54i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (2.25 + 1.37i)T \) |
good | 11 | \( 1 + (-3.85 - 2.22i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.71iT - 13T^{2} \) |
| 17 | \( 1 + (-0.510 + 0.884i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.42 + 2.55i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.712 - 0.411i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.90iT - 29T^{2} \) |
| 31 | \( 1 + (-7.35 - 4.24i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.77 - 3.07i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3.21T + 41T^{2} \) |
| 43 | \( 1 + 0.722T + 43T^{2} \) |
| 47 | \( 1 + (5.90 + 10.2i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.04 - 0.601i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.29 + 12.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.34 + 0.777i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.55 - 13.0i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 14.3iT - 71T^{2} \) |
| 73 | \( 1 + (-13.7 - 7.92i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.31 - 2.27i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 0.0390T + 83T^{2} \) |
| 89 | \( 1 + (-1.60 - 2.77i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.20iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02083484987655312101223397687, −9.566654144975358406822374188349, −8.502488302372406501714819747791, −7.16621196797516184345324722071, −6.84606834987143916325761939682, −6.22494985790423858581401316372, −4.90480599628908615729052119651, −3.79103248447815705951522979698, −2.44281673297824371990142728828, −1.17291942134494998345889318114,
0.818559222442617565866073192114, 2.98902608961134243177517413173, 3.69998518044208178863425384111, 4.94429510424241593455124482164, 5.95122092226281957561921785955, 6.20251238919133399392972619969, 7.78811043974029763368925122900, 8.768055640846751462419581741517, 9.468565978936507675788195060297, 10.06486349430152705709094412898