L(s) = 1 | + (1.70 + 0.324i)3-s + (0.5 + 0.866i)5-s + (0.143 − 2.64i)7-s + (2.78 + 1.10i)9-s + (2.62 + 1.51i)11-s − 6.46i·13-s + (0.569 + 1.63i)15-s + (−0.925 + 1.60i)17-s + (3.98 − 2.30i)19-s + (1.10 − 4.44i)21-s + (−6.74 + 3.89i)23-s + (−0.499 + 0.866i)25-s + (4.38 + 2.78i)27-s − 3.03i·29-s + (4.02 + 2.32i)31-s + ⋯ |
L(s) = 1 | + (0.982 + 0.187i)3-s + (0.223 + 0.387i)5-s + (0.0543 − 0.998i)7-s + (0.929 + 0.368i)9-s + (0.790 + 0.456i)11-s − 1.79i·13-s + (0.147 + 0.422i)15-s + (−0.224 + 0.388i)17-s + (0.914 − 0.527i)19-s + (0.240 − 0.970i)21-s + (−1.40 + 0.812i)23-s + (−0.0999 + 0.173i)25-s + (0.844 + 0.535i)27-s − 0.563i·29-s + (0.723 + 0.417i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.115i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.115i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.40392 - 0.139765i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.40392 - 0.139765i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.70 - 0.324i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.143 + 2.64i)T \) |
good | 11 | \( 1 + (-2.62 - 1.51i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 6.46iT - 13T^{2} \) |
| 17 | \( 1 + (0.925 - 1.60i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.98 + 2.30i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.74 - 3.89i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.03iT - 29T^{2} \) |
| 31 | \( 1 + (-4.02 - 2.32i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.56 - 4.43i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 9.52T + 41T^{2} \) |
| 43 | \( 1 + 6.53T + 43T^{2} \) |
| 47 | \( 1 + (1.70 + 2.95i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.06 - 0.612i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.40 - 11.0i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.46 - 1.42i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.02 + 1.78i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.91iT - 71T^{2} \) |
| 73 | \( 1 + (-7.84 - 4.52i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.79 + 3.11i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 10.3T + 83T^{2} \) |
| 89 | \( 1 + (8.32 + 14.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 7.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.999266473361904395269524843349, −9.611622151837146078396829482657, −8.338078405454255438605771068954, −7.70589804950270872784867750084, −6.99379282964190604739659162825, −5.85373650745892326817100895365, −4.55450602536834480768859162179, −3.66788249071617645124121507578, −2.77808470881449250175954799844, −1.30847196783126972023407987085,
1.56708326224526795219977184150, 2.48863487558468647429114548302, 3.79287745764824790762275646071, 4.66856415025779272855172679626, 6.03372975519594870432430672040, 6.70876499861890948128280046072, 7.898773920077694223216440185233, 8.631780511678739436851928538983, 9.385153971227461596986766888726, 9.673471025488888181269254945314