L(s) = 1 | + (1.58 + 0.698i)3-s + (0.5 + 0.866i)5-s + (−2.26 + 1.37i)7-s + (2.02 + 2.21i)9-s + (−2.77 − 1.60i)11-s + 4.42i·13-s + (0.187 + 1.72i)15-s + (−2.76 + 4.78i)17-s + (−2.54 + 1.47i)19-s + (−4.54 + 0.593i)21-s + (6.13 − 3.54i)23-s + (−0.499 + 0.866i)25-s + (1.66 + 4.92i)27-s − 2.76i·29-s + (5.63 + 3.25i)31-s + ⋯ |
L(s) = 1 | + (0.915 + 0.403i)3-s + (0.223 + 0.387i)5-s + (−0.855 + 0.518i)7-s + (0.674 + 0.738i)9-s + (−0.836 − 0.482i)11-s + 1.22i·13-s + (0.0484 + 0.444i)15-s + (−0.670 + 1.16i)17-s + (−0.584 + 0.337i)19-s + (−0.991 + 0.129i)21-s + (1.27 − 0.738i)23-s + (−0.0999 + 0.173i)25-s + (0.319 + 0.947i)27-s − 0.513i·29-s + (1.01 + 0.584i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.253 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.253 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.04919 + 1.36015i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.04919 + 1.36015i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.58 - 0.698i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (2.26 - 1.37i)T \) |
good | 11 | \( 1 + (2.77 + 1.60i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4.42iT - 13T^{2} \) |
| 17 | \( 1 + (2.76 - 4.78i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.54 - 1.47i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.13 + 3.54i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.76iT - 29T^{2} \) |
| 31 | \( 1 + (-5.63 - 3.25i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.08 - 3.61i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.67T + 41T^{2} \) |
| 43 | \( 1 + 0.715T + 43T^{2} \) |
| 47 | \( 1 + (1.63 + 2.83i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-9.60 - 5.54i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.75 + 6.50i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.765 - 0.441i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.62 + 13.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.67iT - 71T^{2} \) |
| 73 | \( 1 + (2.16 + 1.24i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.95 - 8.57i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6.14T + 83T^{2} \) |
| 89 | \( 1 + (-3.12 - 5.41i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 0.313iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35200778571965113742453270738, −9.573496595246930177294202882674, −8.706094848483586095596133105218, −8.246598324619806543859403192292, −6.86905369798216891119580784180, −6.31633009772292366241636420596, −4.99904019979188121561393733423, −3.93352457848033687766213217147, −2.92437896293571004904731666051, −2.07689722619240685782287412512,
0.73143876838293066044711675003, 2.46122341231353737228105463283, 3.20250551937190503692071389085, 4.47480630804513775407683122040, 5.51372668429715146264627564997, 6.82215890268196606247873421759, 7.33044508214467187998462882310, 8.290866725164793268066621052421, 9.109935827360261928241058859181, 9.868950364686848707270000355542