L(s) = 1 | + (−1.36 + 0.366i)2-s + (0.866 − 0.5i)3-s + (1.73 − i)4-s + (0.866 + 0.5i)5-s + (−0.999 + i)6-s + (2 + 1.73i)7-s + (−1.99 + 2i)8-s + (0.499 − 0.866i)9-s + (−1.36 − 0.366i)10-s + (2.59 − 1.5i)11-s + (0.999 − 1.73i)12-s − 7i·13-s + (−3.36 − 1.63i)14-s + 0.999·15-s + (1.99 − 3.46i)16-s + (−3 − 5.19i)17-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.499 − 0.288i)3-s + (0.866 − 0.5i)4-s + (0.387 + 0.223i)5-s + (−0.408 + 0.408i)6-s + (0.755 + 0.654i)7-s + (−0.707 + 0.707i)8-s + (0.166 − 0.288i)9-s + (−0.431 − 0.115i)10-s + (0.783 − 0.452i)11-s + (0.288 − 0.499i)12-s − 1.94i·13-s + (−0.899 − 0.436i)14-s + 0.258·15-s + (0.499 − 0.866i)16-s + (−0.727 − 1.26i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 + 0.378i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.925 + 0.378i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.41951 - 0.279298i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.41951 - 0.279298i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.366i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-2 - 1.73i)T \) |
good | 11 | \( 1 + (-2.59 + 1.5i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 7iT - 13T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.59 - 1.5i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6iT - 29T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-9.52 - 5.5i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 + 10iT - 43T^{2} \) |
| 47 | \( 1 + (-1.5 + 2.59i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (9.52 - 5.5i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.92 + 4i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.92 - 4i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.73 - i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 10T + 71T^{2} \) |
| 73 | \( 1 + (2 + 3.46i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + (7 - 12.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.890116180245446210773314506203, −9.230844901990206016911832454618, −8.429967911492275989851509090373, −7.78782336720873392467207613805, −6.94877222126189560365451176563, −5.86631136236479688466028397956, −5.19978236503707098686423365680, −3.25680537872176439512421202100, −2.34099621577437718287573556452, −1.03981874665013207737782387729,
1.47016514491748912113033012802, 2.22343739721503689479485596504, 3.94305165912179434726597336809, 4.49232083042435405663238181585, 6.27931309959282877047039783775, 6.95459605796370952142378178825, 7.950074051288570606292710171529, 8.711496753424757659189750060367, 9.440852603645324939638262777137, 9.965232140111147422479019441900