L(s) = 1 | + (−1.38 + 0.281i)2-s + (−1.72 − 0.101i)3-s + (1.84 − 0.780i)4-s + (−0.866 + 0.5i)5-s + (2.42 − 0.345i)6-s + (−0.542 − 2.58i)7-s + (−2.33 + 1.59i)8-s + (2.97 + 0.351i)9-s + (1.05 − 0.936i)10-s + (−0.823 + 1.42i)11-s + (−3.26 + 1.16i)12-s + 1.37·13-s + (1.48 + 3.43i)14-s + (1.54 − 0.776i)15-s + (2.78 − 2.87i)16-s + (1.71 − 2.97i)17-s + ⋯ |
L(s) = 1 | + (−0.980 + 0.198i)2-s + (−0.998 − 0.0586i)3-s + (0.920 − 0.390i)4-s + (−0.387 + 0.223i)5-s + (0.989 − 0.141i)6-s + (−0.205 − 0.978i)7-s + (−0.824 + 0.565i)8-s + (0.993 + 0.117i)9-s + (0.335 − 0.296i)10-s + (−0.248 + 0.430i)11-s + (−0.942 + 0.335i)12-s + 0.382·13-s + (0.395 + 0.918i)14-s + (0.399 − 0.200i)15-s + (0.695 − 0.718i)16-s + (0.416 − 0.720i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.640 + 0.767i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.640 + 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.115406 - 0.246520i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.115406 - 0.246520i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 - 0.281i)T \) |
| 3 | \( 1 + (1.72 + 0.101i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.542 + 2.58i)T \) |
good | 11 | \( 1 + (0.823 - 1.42i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 1.37T + 13T^{2} \) |
| 17 | \( 1 + (-1.71 + 2.97i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.30 - 2.25i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.30 - 1.33i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.197T + 29T^{2} \) |
| 31 | \( 1 + (2.59 + 1.49i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.72 - 1.57i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 9.89T + 41T^{2} \) |
| 43 | \( 1 - 2.90iT - 43T^{2} \) |
| 47 | \( 1 + (4.47 + 7.74i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.68 + 2.91i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (11.9 + 6.88i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.06 + 5.31i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.09 + 3.52i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 0.209iT - 71T^{2} \) |
| 73 | \( 1 + (14.6 + 8.43i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.67 + 4.63i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 13.9iT - 83T^{2} \) |
| 89 | \( 1 + (0.829 + 1.43i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 0.837iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05511915450724922934171651856, −9.272884737641891424080286423272, −7.82718103819121404368031090896, −7.46496698052981788807158547893, −6.60314673598154913135525429821, −5.77306700886066301150852813072, −4.62570791092007588131150314411, −3.35598870841989792941187929558, −1.57587711678542757890273538467, −0.22948650363124197122961812662,
1.33261605771369465400583693455, 2.84888790681078125430846388210, 4.13619528491911843956135539977, 5.58121578814436229108007017773, 6.10869179178488274923344550867, 7.16734023526063534218273420416, 8.071450017395724176888754874354, 8.910815695713212081179635926954, 9.644582666879179793538621613415, 10.65890853450299056640214441754