L(s) = 1 | + (0.331 − 1.37i)2-s + (−0.303 − 1.70i)3-s + (−1.78 − 0.910i)4-s + (0.866 − 0.5i)5-s + (−2.44 − 0.147i)6-s + (−2.64 + 0.0708i)7-s + (−1.84 + 2.14i)8-s + (−2.81 + 1.03i)9-s + (−0.400 − 1.35i)10-s + (−0.735 + 1.27i)11-s + (−1.01 + 3.31i)12-s + 1.58·13-s + (−0.778 + 3.65i)14-s + (−1.11 − 1.32i)15-s + (2.34 + 3.24i)16-s + (−2.77 + 4.81i)17-s + ⋯ |
L(s) = 1 | + (0.234 − 0.972i)2-s + (−0.175 − 0.984i)3-s + (−0.890 − 0.455i)4-s + (0.387 − 0.223i)5-s + (−0.998 − 0.0603i)6-s + (−0.999 + 0.0267i)7-s + (−0.651 + 0.759i)8-s + (−0.938 + 0.344i)9-s + (−0.126 − 0.428i)10-s + (−0.221 + 0.384i)11-s + (−0.292 + 0.956i)12-s + 0.439·13-s + (−0.207 + 0.978i)14-s + (−0.287 − 0.342i)15-s + (0.585 + 0.810i)16-s + (−0.673 + 1.16i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.370 - 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.370 - 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.116503 + 0.0789638i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.116503 + 0.0789638i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.331 + 1.37i)T \) |
| 3 | \( 1 + (0.303 + 1.70i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (2.64 - 0.0708i)T \) |
good | 11 | \( 1 + (0.735 - 1.27i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 1.58T + 13T^{2} \) |
| 17 | \( 1 + (2.77 - 4.81i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.80 + 4.85i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.32 - 0.762i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.28T + 29T^{2} \) |
| 31 | \( 1 + (-0.436 - 0.252i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.430 - 0.248i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.40T + 41T^{2} \) |
| 43 | \( 1 - 0.257iT - 43T^{2} \) |
| 47 | \( 1 + (5.41 + 9.38i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.79 - 10.0i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.84 + 2.21i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.65 + 13.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.84 + 3.95i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.60iT - 71T^{2} \) |
| 73 | \( 1 + (-8.97 - 5.18i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.01 + 5.21i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 13.3iT - 83T^{2} \) |
| 89 | \( 1 + (-3.02 - 5.24i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.501967364656857775523572057721, −8.894185590104208817960506397840, −7.959093154390688334821768765382, −6.62132330902255215116125636389, −6.07838332601593868928187019257, −5.02337004265396092780418745775, −3.78316950781526712589453383666, −2.59963929692459260285666354907, −1.67194259004588504602185204167, −0.06240516116493112739048694490,
2.90940319807786763369986236779, 3.78977439627272319712850422359, 4.75030429747174863715848525798, 5.89008850609605218477748698265, 6.21614677404665407507242256306, 7.33868409469767941804684426729, 8.469552939066507349977943124909, 9.230269643458572376335228547351, 9.821020967750115777173154689184, 10.64170008486294822110793597879