L(s) = 1 | + (0.707 + 0.707i)3-s + (−2.17 + 0.513i)5-s + (0.659 − 2.56i)7-s + 1.00i·9-s − 1.57·11-s + (−3.14 − 3.14i)13-s + (−1.90 − 1.17i)15-s + (−4.47 + 4.47i)17-s − 6.38·19-s + (2.27 − 1.34i)21-s + (1.38 − 1.38i)23-s + (4.47 − 2.23i)25-s + (−0.707 + 0.707i)27-s + 2.19i·29-s + 1.53i·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (−0.973 + 0.229i)5-s + (0.249 − 0.968i)7-s + 0.333i·9-s − 0.475·11-s + (−0.872 − 0.872i)13-s + (−0.491 − 0.303i)15-s + (−1.08 + 1.08i)17-s − 1.46·19-s + (0.497 − 0.293i)21-s + (0.288 − 0.288i)23-s + (0.894 − 0.446i)25-s + (−0.136 + 0.136i)27-s + 0.407i·29-s + 0.276i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.861 + 0.508i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.861 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0641914 - 0.234980i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0641914 - 0.234980i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (2.17 - 0.513i)T \) |
| 7 | \( 1 + (-0.659 + 2.56i)T \) |
good | 11 | \( 1 + 1.57T + 11T^{2} \) |
| 13 | \( 1 + (3.14 + 3.14i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.47 - 4.47i)T - 17iT^{2} \) |
| 19 | \( 1 + 6.38T + 19T^{2} \) |
| 23 | \( 1 + (-1.38 + 1.38i)T - 23iT^{2} \) |
| 29 | \( 1 - 2.19iT - 29T^{2} \) |
| 31 | \( 1 - 1.53iT - 31T^{2} \) |
| 37 | \( 1 + (8.06 + 8.06i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.79iT - 41T^{2} \) |
| 43 | \( 1 + (-0.0831 + 0.0831i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.14 - 3.14i)T - 47iT^{2} \) |
| 53 | \( 1 + (-6.30 + 6.30i)T - 53iT^{2} \) |
| 59 | \( 1 + 7.59T + 59T^{2} \) |
| 61 | \( 1 + 3.73iT - 61T^{2} \) |
| 67 | \( 1 + (1.84 + 1.84i)T + 67iT^{2} \) |
| 71 | \( 1 - 9.63T + 71T^{2} \) |
| 73 | \( 1 + (-2.46 - 2.46i)T + 73iT^{2} \) |
| 79 | \( 1 - 15.8iT - 79T^{2} \) |
| 83 | \( 1 + (-2.70 - 2.70i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.3T + 89T^{2} \) |
| 97 | \( 1 + (-8.82 + 8.82i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12370808119715227100874026867, −8.762429130961808557585326368244, −8.210817101248041408170893506986, −7.38484922526111259511747340077, −6.63059772361034038779369130077, −5.12178869490755379831071163910, −4.26548093472227542424542702667, −3.53865119879142766447767664489, −2.24675355867461167382666982405, −0.10446751945487242842477442160,
2.01943058265364343630471144705, 2.93527579193236690475506130604, 4.37901636810145262975710103576, 5.02011737491040687433906516731, 6.44180027102204482870414342026, 7.19318325490584891694073605039, 8.102310991163450359741347946996, 8.787206008339035397207487712424, 9.397618799824882770926958038426, 10.66038531767169450103977909780