L(s) = 1 | + (−0.707 − 0.707i)3-s + (1.43 + 1.71i)5-s + (1.41 − 2.23i)7-s + 1.00i·9-s + 0.566·11-s + (−5.03 − 5.03i)13-s + (0.194 − 2.22i)15-s + (0.984 − 0.984i)17-s + 7.61·19-s + (−2.58 + 0.581i)21-s + (2.55 − 2.55i)23-s + (−0.865 + 4.92i)25-s + (0.707 − 0.707i)27-s + 7.85i·29-s − 7.09i·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (0.642 + 0.765i)5-s + (0.534 − 0.845i)7-s + 0.333i·9-s + 0.170·11-s + (−1.39 − 1.39i)13-s + (0.0501 − 0.575i)15-s + (0.238 − 0.238i)17-s + 1.74·19-s + (−0.563 + 0.126i)21-s + (0.531 − 0.531i)23-s + (−0.173 + 0.984i)25-s + (0.136 − 0.136i)27-s + 1.45i·29-s − 1.27i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.634 + 0.772i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.634 + 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39999 - 0.661522i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39999 - 0.661522i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (-1.43 - 1.71i)T \) |
| 7 | \( 1 + (-1.41 + 2.23i)T \) |
good | 11 | \( 1 - 0.566T + 11T^{2} \) |
| 13 | \( 1 + (5.03 + 5.03i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.984 + 0.984i)T - 17iT^{2} \) |
| 19 | \( 1 - 7.61T + 19T^{2} \) |
| 23 | \( 1 + (-2.55 + 2.55i)T - 23iT^{2} \) |
| 29 | \( 1 - 7.85iT - 29T^{2} \) |
| 31 | \( 1 + 7.09iT - 31T^{2} \) |
| 37 | \( 1 + (-0.887 - 0.887i)T + 37iT^{2} \) |
| 41 | \( 1 + 6.29iT - 41T^{2} \) |
| 43 | \( 1 + (2.74 - 2.74i)T - 43iT^{2} \) |
| 47 | \( 1 + (-3.25 + 3.25i)T - 47iT^{2} \) |
| 53 | \( 1 + (-7.27 + 7.27i)T - 53iT^{2} \) |
| 59 | \( 1 - 6.62T + 59T^{2} \) |
| 61 | \( 1 + 5.46iT - 61T^{2} \) |
| 67 | \( 1 + (2.53 + 2.53i)T + 67iT^{2} \) |
| 71 | \( 1 - 8.01T + 71T^{2} \) |
| 73 | \( 1 + (-8.97 - 8.97i)T + 73iT^{2} \) |
| 79 | \( 1 - 1.85iT - 79T^{2} \) |
| 83 | \( 1 + (2.61 + 2.61i)T + 83iT^{2} \) |
| 89 | \( 1 + 10.2T + 89T^{2} \) |
| 97 | \( 1 + (4.32 - 4.32i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13200486964713820227281641487, −9.567380318365657011647627889163, −8.107496447351391900548592283215, −7.29057953729453468729634403762, −6.91601934474526132769699230613, −5.49743917163894195769443126037, −5.09015870784968413369322538433, −3.47062829740713275985438877052, −2.41318056481942608146380207539, −0.898523226037773304543838168848,
1.41928708908368558719713478329, 2.64493889747689492745977808594, 4.27941672297678842853340823779, 5.10846917198347653891680155541, 5.63716523948563621706150515776, 6.78738024839593977913749838793, 7.82013710668559299163056573200, 8.947826818044774881630649419481, 9.464517363238404236655997411145, 10.04013436469216038236882966043