L(s) = 1 | + (0.707 + 0.707i)3-s + (1.98 + 1.02i)5-s + (−0.630 − 2.56i)7-s + 1.00i·9-s + 2.36·11-s + (0.918 + 0.918i)13-s + (0.679 + 2.13i)15-s + (3.62 − 3.62i)17-s − 1.07·19-s + (1.37 − 2.26i)21-s + (1.45 − 1.45i)23-s + (2.89 + 4.07i)25-s + (−0.707 + 0.707i)27-s + 7.72i·29-s − 1.21i·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.888 + 0.458i)5-s + (−0.238 − 0.971i)7-s + 0.333i·9-s + 0.712·11-s + (0.254 + 0.254i)13-s + (0.175 + 0.550i)15-s + (0.878 − 0.878i)17-s − 0.247·19-s + (0.299 − 0.493i)21-s + (0.302 − 0.302i)23-s + (0.578 + 0.815i)25-s + (−0.136 + 0.136i)27-s + 1.43i·29-s − 0.218i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.312i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.950 - 0.312i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.13663 + 0.341856i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.13663 + 0.341856i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-1.98 - 1.02i)T \) |
| 7 | \( 1 + (0.630 + 2.56i)T \) |
good | 11 | \( 1 - 2.36T + 11T^{2} \) |
| 13 | \( 1 + (-0.918 - 0.918i)T + 13iT^{2} \) |
| 17 | \( 1 + (-3.62 + 3.62i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.07T + 19T^{2} \) |
| 23 | \( 1 + (-1.45 + 1.45i)T - 23iT^{2} \) |
| 29 | \( 1 - 7.72iT - 29T^{2} \) |
| 31 | \( 1 + 1.21iT - 31T^{2} \) |
| 37 | \( 1 + (-2.38 - 2.38i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.42iT - 41T^{2} \) |
| 43 | \( 1 + (-0.879 + 0.879i)T - 43iT^{2} \) |
| 47 | \( 1 + (-3.67 + 3.67i)T - 47iT^{2} \) |
| 53 | \( 1 + (7.88 - 7.88i)T - 53iT^{2} \) |
| 59 | \( 1 + 8.24T + 59T^{2} \) |
| 61 | \( 1 - 10.1iT - 61T^{2} \) |
| 67 | \( 1 + (-6.62 - 6.62i)T + 67iT^{2} \) |
| 71 | \( 1 + 8.21T + 71T^{2} \) |
| 73 | \( 1 + (-1.79 - 1.79i)T + 73iT^{2} \) |
| 79 | \( 1 + 12.2iT - 79T^{2} \) |
| 83 | \( 1 + (0.387 + 0.387i)T + 83iT^{2} \) |
| 89 | \( 1 - 7.46T + 89T^{2} \) |
| 97 | \( 1 + (-6.92 + 6.92i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29695275186277330995893403910, −9.392344885106438594074620188960, −8.866647888230659954240949462457, −7.50668623746794497388361188811, −6.89065545518514908386467495292, −5.92325834667284731401905038650, −4.81737124050397666793538642565, −3.73618445468180378755525227882, −2.83758104707817474032115819123, −1.35622848261299090535080375660,
1.34457061324062197801546404076, 2.40672739397633495800306535600, 3.57034213982824193455350251803, 4.93309779228078351220148586820, 6.06276562335619884799187791308, 6.33652719737051296738013553363, 7.83832276349729648292525489189, 8.489060090520632830761795406570, 9.399704794375714113342454891677, 9.783648710060294793701033297937