L(s) = 1 | + (0.707 − 0.707i)3-s + (0.503 + 2.17i)5-s + (−2.48 − 0.918i)7-s − 1.00i·9-s − 5.08·11-s + (−3.79 + 3.79i)13-s + (1.89 + 1.18i)15-s + (2.83 + 2.83i)17-s − 3.66·19-s + (−2.40 + 1.10i)21-s + (−0.591 − 0.591i)23-s + (−4.49 + 2.19i)25-s + (−0.707 − 0.707i)27-s − 1.05i·29-s + 8.77i·31-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (0.225 + 0.974i)5-s + (−0.937 − 0.347i)7-s − 0.333i·9-s − 1.53·11-s + (−1.05 + 1.05i)13-s + (0.489 + 0.305i)15-s + (0.687 + 0.687i)17-s − 0.840·19-s + (−0.524 + 0.241i)21-s + (−0.123 − 0.123i)23-s + (−0.898 + 0.438i)25-s + (−0.136 − 0.136i)27-s − 0.195i·29-s + 1.57i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.776 - 0.629i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.776 - 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.188206 + 0.531088i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.188206 + 0.531088i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (-0.503 - 2.17i)T \) |
| 7 | \( 1 + (2.48 + 0.918i)T \) |
good | 11 | \( 1 + 5.08T + 11T^{2} \) |
| 13 | \( 1 + (3.79 - 3.79i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.83 - 2.83i)T + 17iT^{2} \) |
| 19 | \( 1 + 3.66T + 19T^{2} \) |
| 23 | \( 1 + (0.591 + 0.591i)T + 23iT^{2} \) |
| 29 | \( 1 + 1.05iT - 29T^{2} \) |
| 31 | \( 1 - 8.77iT - 31T^{2} \) |
| 37 | \( 1 + (-4.95 + 4.95i)T - 37iT^{2} \) |
| 41 | \( 1 + 2.91iT - 41T^{2} \) |
| 43 | \( 1 + (6.86 + 6.86i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.97 - 1.97i)T + 47iT^{2} \) |
| 53 | \( 1 + (5.54 + 5.54i)T + 53iT^{2} \) |
| 59 | \( 1 + 1.49T + 59T^{2} \) |
| 61 | \( 1 - 12.3iT - 61T^{2} \) |
| 67 | \( 1 + (-4.30 + 4.30i)T - 67iT^{2} \) |
| 71 | \( 1 - 9.87T + 71T^{2} \) |
| 73 | \( 1 + (7.02 - 7.02i)T - 73iT^{2} \) |
| 79 | \( 1 - 11.9iT - 79T^{2} \) |
| 83 | \( 1 + (5.33 - 5.33i)T - 83iT^{2} \) |
| 89 | \( 1 + 1.75T + 89T^{2} \) |
| 97 | \( 1 + (-3.26 - 3.26i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24803780007533161373843249459, −9.984832540995642433911414535498, −8.843395541361902733977454670450, −7.79448657091476101930851292869, −7.08633269287308215743510570505, −6.44923489697935760382691709398, −5.38042664136119535340397852154, −3.97503939037825785198477967139, −2.92095420617070287022002545573, −2.12643233281555177986961235280,
0.23459378978185167602925388367, 2.38800374267103693694772088619, 3.16908672366710518828088817050, 4.64380615277608990859693794433, 5.29791769153770965048069638256, 6.16643111892634740807862211395, 7.71298924566262366188059377647, 8.059734627828142848500159460511, 9.203500510409376684716258747739, 9.879112145120269627478433451965