L(s) = 1 | + (0.707 − 0.707i)3-s + (1.35 + 1.77i)5-s + (2.59 + 0.498i)7-s − 1.00i·9-s − 1.97·11-s + (4.59 − 4.59i)13-s + (2.21 + 0.295i)15-s + (−4.07 − 4.07i)17-s + 0.683·19-s + (2.18 − 1.48i)21-s + (5.64 + 5.64i)23-s + (−1.31 + 4.82i)25-s + (−0.707 − 0.707i)27-s + 5.55i·29-s + 6.08i·31-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (0.607 + 0.794i)5-s + (0.982 + 0.188i)7-s − 0.333i·9-s − 0.594·11-s + (1.27 − 1.27i)13-s + (0.572 + 0.0763i)15-s + (−0.988 − 0.988i)17-s + 0.156·19-s + (0.477 − 0.324i)21-s + (1.17 + 1.17i)23-s + (−0.262 + 0.964i)25-s + (−0.136 − 0.136i)27-s + 1.03i·29-s + 1.09i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0901i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0901i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.21543 - 0.100031i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.21543 - 0.100031i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (-1.35 - 1.77i)T \) |
| 7 | \( 1 + (-2.59 - 0.498i)T \) |
good | 11 | \( 1 + 1.97T + 11T^{2} \) |
| 13 | \( 1 + (-4.59 + 4.59i)T - 13iT^{2} \) |
| 17 | \( 1 + (4.07 + 4.07i)T + 17iT^{2} \) |
| 19 | \( 1 - 0.683T + 19T^{2} \) |
| 23 | \( 1 + (-5.64 - 5.64i)T + 23iT^{2} \) |
| 29 | \( 1 - 5.55iT - 29T^{2} \) |
| 31 | \( 1 - 6.08iT - 31T^{2} \) |
| 37 | \( 1 + (-2.16 + 2.16i)T - 37iT^{2} \) |
| 41 | \( 1 + 9.16iT - 41T^{2} \) |
| 43 | \( 1 + (-0.140 - 0.140i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.75 + 1.75i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.681 + 0.681i)T + 53iT^{2} \) |
| 59 | \( 1 - 9.12T + 59T^{2} \) |
| 61 | \( 1 + 2.91iT - 61T^{2} \) |
| 67 | \( 1 + (7.72 - 7.72i)T - 67iT^{2} \) |
| 71 | \( 1 + 13.9T + 71T^{2} \) |
| 73 | \( 1 + (-7.15 + 7.15i)T - 73iT^{2} \) |
| 79 | \( 1 + 12.3iT - 79T^{2} \) |
| 83 | \( 1 + (7.79 - 7.79i)T - 83iT^{2} \) |
| 89 | \( 1 + 9.74T + 89T^{2} \) |
| 97 | \( 1 + (0.937 + 0.937i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40558251191308082154432121896, −9.138562529940985672756721498696, −8.566613631650980915802743106349, −7.52346505259569115019532851648, −6.95095833231535083389830037838, −5.71854333441138169055879296496, −5.09511476662282204019046460396, −3.44492846083330308343744087736, −2.61869453228522833448432594010, −1.37313776903999668560137751474,
1.39940145703834690666881895139, 2.45089540033076319425602453436, 4.21937621026917917252756468043, 4.55700107526890098494616079526, 5.77282971208282461866649086990, 6.65250431778228288298663820973, 8.055604594628012554979943976205, 8.550112676982733258388780890239, 9.211724938992926241517116771088, 10.17437777881337723035489740260