Properties

Label 2-840-35.27-c1-0-7
Degree $2$
Conductor $840$
Sign $0.723 - 0.689i$
Analytic cond. $6.70743$
Root an. cond. $2.58987$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)3-s + (1.75 + 1.38i)5-s + (2.02 + 1.69i)7-s + 1.00i·9-s + 2.43·11-s + (1.08 + 1.08i)13-s + (−0.265 − 2.22i)15-s + (−1.74 + 1.74i)17-s − 6.07·19-s + (−0.234 − 2.63i)21-s + (−1.45 + 1.45i)23-s + (1.17 + 4.85i)25-s + (0.707 − 0.707i)27-s + 5.62i·29-s − 6.36i·31-s + ⋯
L(s)  = 1  + (−0.408 − 0.408i)3-s + (0.786 + 0.618i)5-s + (0.766 + 0.641i)7-s + 0.333i·9-s + 0.732·11-s + (0.300 + 0.300i)13-s + (−0.0685 − 0.573i)15-s + (−0.422 + 0.422i)17-s − 1.39·19-s + (−0.0511 − 0.575i)21-s + (−0.303 + 0.303i)23-s + (0.235 + 0.971i)25-s + (0.136 − 0.136i)27-s + 1.04i·29-s − 1.14i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.723 - 0.689i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.723 - 0.689i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.723 - 0.689i$
Analytic conductor: \(6.70743\)
Root analytic conductor: \(2.58987\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{840} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 840,\ (\ :1/2),\ 0.723 - 0.689i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.54774 + 0.619379i\)
\(L(\frac12)\) \(\approx\) \(1.54774 + 0.619379i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.707 + 0.707i)T \)
5 \( 1 + (-1.75 - 1.38i)T \)
7 \( 1 + (-2.02 - 1.69i)T \)
good11 \( 1 - 2.43T + 11T^{2} \)
13 \( 1 + (-1.08 - 1.08i)T + 13iT^{2} \)
17 \( 1 + (1.74 - 1.74i)T - 17iT^{2} \)
19 \( 1 + 6.07T + 19T^{2} \)
23 \( 1 + (1.45 - 1.45i)T - 23iT^{2} \)
29 \( 1 - 5.62iT - 29T^{2} \)
31 \( 1 + 6.36iT - 31T^{2} \)
37 \( 1 + (-6.09 - 6.09i)T + 37iT^{2} \)
41 \( 1 - 7.22iT - 41T^{2} \)
43 \( 1 + (-6.91 + 6.91i)T - 43iT^{2} \)
47 \( 1 + (-1.47 + 1.47i)T - 47iT^{2} \)
53 \( 1 + (-6.45 + 6.45i)T - 53iT^{2} \)
59 \( 1 + 3.00T + 59T^{2} \)
61 \( 1 + 9.57iT - 61T^{2} \)
67 \( 1 + (4.18 + 4.18i)T + 67iT^{2} \)
71 \( 1 - 1.97T + 71T^{2} \)
73 \( 1 + (0.625 + 0.625i)T + 73iT^{2} \)
79 \( 1 + 0.692iT - 79T^{2} \)
83 \( 1 + (-12.1 - 12.1i)T + 83iT^{2} \)
89 \( 1 + 6.14T + 89T^{2} \)
97 \( 1 + (-9.98 + 9.98i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48008661018212197692572576293, −9.403793095267048657186019693231, −8.664236803460892869624347101894, −7.72630861993078957960803374773, −6.52601584561893928939580768401, −6.19048454562501299558168495085, −5.13782235510430908765018041716, −4.00543312539034931579473004035, −2.42733131194985825733934887898, −1.59512362520688032355794699057, 0.937001238211665935525777138970, 2.27402841932872652079424163458, 4.09330683631944934801990015507, 4.58302167341287306863934977886, 5.72480687812038254189095502061, 6.41902485378244304313609197929, 7.55012052737815554392281804748, 8.658866602074593303462573465069, 9.176148974740659481874713541374, 10.27196942220980521733133680450

Graph of the $Z$-function along the critical line