L(s) = 1 | + (0.707 + 0.707i)3-s + (2.21 − 0.315i)5-s + (0.706 + 2.54i)7-s + 1.00i·9-s − 1.16·11-s + (1.47 + 1.47i)13-s + (1.78 + 1.34i)15-s + (1.17 − 1.17i)17-s + 2.09·19-s + (−1.30 + 2.30i)21-s + (−5.33 + 5.33i)23-s + (4.80 − 1.39i)25-s + (−0.707 + 0.707i)27-s + 1.55i·29-s − 2.66i·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.990 − 0.141i)5-s + (0.266 + 0.963i)7-s + 0.333i·9-s − 0.352·11-s + (0.409 + 0.409i)13-s + (0.461 + 0.346i)15-s + (0.285 − 0.285i)17-s + 0.481·19-s + (−0.284 + 0.502i)21-s + (−1.11 + 1.11i)23-s + (0.960 − 0.279i)25-s + (−0.136 + 0.136i)27-s + 0.288i·29-s − 0.479i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 - 0.822i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.569 - 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.90318 + 0.997280i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.90318 + 0.997280i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-2.21 + 0.315i)T \) |
| 7 | \( 1 + (-0.706 - 2.54i)T \) |
good | 11 | \( 1 + 1.16T + 11T^{2} \) |
| 13 | \( 1 + (-1.47 - 1.47i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.17 + 1.17i)T - 17iT^{2} \) |
| 19 | \( 1 - 2.09T + 19T^{2} \) |
| 23 | \( 1 + (5.33 - 5.33i)T - 23iT^{2} \) |
| 29 | \( 1 - 1.55iT - 29T^{2} \) |
| 31 | \( 1 + 2.66iT - 31T^{2} \) |
| 37 | \( 1 + (-0.549 - 0.549i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.59iT - 41T^{2} \) |
| 43 | \( 1 + (5.86 - 5.86i)T - 43iT^{2} \) |
| 47 | \( 1 + (-8.22 + 8.22i)T - 47iT^{2} \) |
| 53 | \( 1 + (-3.22 + 3.22i)T - 53iT^{2} \) |
| 59 | \( 1 - 3.54T + 59T^{2} \) |
| 61 | \( 1 + 4.08iT - 61T^{2} \) |
| 67 | \( 1 + (-3.06 - 3.06i)T + 67iT^{2} \) |
| 71 | \( 1 + 1.65T + 71T^{2} \) |
| 73 | \( 1 + (-6.90 - 6.90i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.6iT - 79T^{2} \) |
| 83 | \( 1 + (-3.91 - 3.91i)T + 83iT^{2} \) |
| 89 | \( 1 + 11.8T + 89T^{2} \) |
| 97 | \( 1 + (-0.533 + 0.533i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03563139068040828788192559487, −9.546689794826226442620921136307, −8.756611594837831810534174681501, −8.023022108218897683853251992986, −6.83594750730514824311476768536, −5.63436415733007152658840093479, −5.29604867315486288628196051718, −3.91673744047961688026705956681, −2.67586402291791580065527520738, −1.73527083293774308024880116539,
1.11281647576507877720356343008, 2.33886635142585323092130029792, 3.49476632864670597022846492212, 4.69414300676854721465445459299, 5.84199003149938619794463513774, 6.59829968945942211893452802141, 7.58430148841031391990054174690, 8.273688703774688057106884829173, 9.250932877495252463048897168986, 10.27790732654672979204536547163