L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.503 − 2.17i)5-s + (0.918 + 2.48i)7-s − 1.00i·9-s − 5.08·11-s + (3.79 − 3.79i)13-s + (1.89 + 1.18i)15-s + (−2.83 − 2.83i)17-s + 3.66·19-s + (−2.40 − 1.10i)21-s + (−0.591 − 0.591i)23-s + (−4.49 + 2.19i)25-s + (0.707 + 0.707i)27-s − 1.05i·29-s − 8.77i·31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (−0.225 − 0.974i)5-s + (0.347 + 0.937i)7-s − 0.333i·9-s − 1.53·11-s + (1.05 − 1.05i)13-s + (0.489 + 0.305i)15-s + (−0.687 − 0.687i)17-s + 0.840·19-s + (−0.524 − 0.241i)21-s + (−0.123 − 0.123i)23-s + (−0.898 + 0.438i)25-s + (0.136 + 0.136i)27-s − 0.195i·29-s − 1.57i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0282 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0282 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.653950 - 0.635737i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.653950 - 0.635737i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.503 + 2.17i)T \) |
| 7 | \( 1 + (-0.918 - 2.48i)T \) |
good | 11 | \( 1 + 5.08T + 11T^{2} \) |
| 13 | \( 1 + (-3.79 + 3.79i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.83 + 2.83i)T + 17iT^{2} \) |
| 19 | \( 1 - 3.66T + 19T^{2} \) |
| 23 | \( 1 + (0.591 + 0.591i)T + 23iT^{2} \) |
| 29 | \( 1 + 1.05iT - 29T^{2} \) |
| 31 | \( 1 + 8.77iT - 31T^{2} \) |
| 37 | \( 1 + (-4.95 + 4.95i)T - 37iT^{2} \) |
| 41 | \( 1 - 2.91iT - 41T^{2} \) |
| 43 | \( 1 + (6.86 + 6.86i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.97 + 1.97i)T + 47iT^{2} \) |
| 53 | \( 1 + (5.54 + 5.54i)T + 53iT^{2} \) |
| 59 | \( 1 - 1.49T + 59T^{2} \) |
| 61 | \( 1 + 12.3iT - 61T^{2} \) |
| 67 | \( 1 + (-4.30 + 4.30i)T - 67iT^{2} \) |
| 71 | \( 1 - 9.87T + 71T^{2} \) |
| 73 | \( 1 + (-7.02 + 7.02i)T - 73iT^{2} \) |
| 79 | \( 1 - 11.9iT - 79T^{2} \) |
| 83 | \( 1 + (-5.33 + 5.33i)T - 83iT^{2} \) |
| 89 | \( 1 - 1.75T + 89T^{2} \) |
| 97 | \( 1 + (3.26 + 3.26i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.894833107919660862349384517294, −9.200231637557941125868280295836, −8.185899794798172534124700208213, −7.83945659641808363948051068881, −6.20444464551214749565744077354, −5.29582080694008838532728025106, −4.99270305900385259354918671818, −3.60663907027120470423071156682, −2.31004967719471751423629931678, −0.47930010095558400626313875700,
1.50977680215669077055570297446, 2.92578073951619184444863688476, 4.04832830593426799714111338902, 5.10557640906220082886356698583, 6.30443431991873759113312146575, 6.92787213028978514700852431164, 7.75779219908361320631955273563, 8.441172999087711019411702928752, 9.845125060273237767167229737313, 10.67890043800014466617617801865