L(s) = 1 | + (−1.08 + 0.904i)2-s + (−0.707 + 0.707i)3-s + (0.364 − 1.96i)4-s + (−0.998 + 2.00i)5-s + (0.129 − 1.40i)6-s + (−2.62 − 0.301i)7-s + (1.38 + 2.46i)8-s − 1.00i·9-s + (−0.723 − 3.07i)10-s − 2.31i·11-s + (1.13 + 1.64i)12-s + (−3.26 + 3.26i)13-s + (3.13 − 2.04i)14-s + (−0.708 − 2.12i)15-s + (−3.73 − 1.43i)16-s + (2.54 − 2.54i)17-s + ⋯ |
L(s) = 1 | + (−0.768 + 0.639i)2-s + (−0.408 + 0.408i)3-s + (0.182 − 0.983i)4-s + (−0.446 + 0.894i)5-s + (0.0527 − 0.574i)6-s + (−0.993 − 0.113i)7-s + (0.488 + 0.872i)8-s − 0.333i·9-s + (−0.228 − 0.973i)10-s − 0.697i·11-s + (0.327 + 0.475i)12-s + (−0.905 + 0.905i)13-s + (0.836 − 0.547i)14-s + (−0.182 − 0.547i)15-s + (−0.933 − 0.358i)16-s + (0.616 − 0.616i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 + 0.294i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.955 + 0.294i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.407294 - 0.0612387i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.407294 - 0.0612387i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.08 - 0.904i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.998 - 2.00i)T \) |
| 7 | \( 1 + (2.62 + 0.301i)T \) |
good | 11 | \( 1 + 2.31iT - 11T^{2} \) |
| 13 | \( 1 + (3.26 - 3.26i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.54 + 2.54i)T - 17iT^{2} \) |
| 19 | \( 1 + 2.46iT - 19T^{2} \) |
| 23 | \( 1 + (2.19 - 2.19i)T - 23iT^{2} \) |
| 29 | \( 1 - 5.31T + 29T^{2} \) |
| 31 | \( 1 + 0.162iT - 31T^{2} \) |
| 37 | \( 1 + (0.503 - 0.503i)T - 37iT^{2} \) |
| 41 | \( 1 + 0.552iT - 41T^{2} \) |
| 43 | \( 1 + (5.38 + 5.38i)T + 43iT^{2} \) |
| 47 | \( 1 + (-9.44 + 9.44i)T - 47iT^{2} \) |
| 53 | \( 1 + (-2.25 - 2.25i)T + 53iT^{2} \) |
| 59 | \( 1 + 0.0510iT - 59T^{2} \) |
| 61 | \( 1 + 4.19T + 61T^{2} \) |
| 67 | \( 1 + (-5.01 + 5.01i)T - 67iT^{2} \) |
| 71 | \( 1 - 14.1T + 71T^{2} \) |
| 73 | \( 1 + (-7.08 - 7.08i)T + 73iT^{2} \) |
| 79 | \( 1 + 16.6iT - 79T^{2} \) |
| 83 | \( 1 + (-0.691 + 0.691i)T - 83iT^{2} \) |
| 89 | \( 1 + 12.0T + 89T^{2} \) |
| 97 | \( 1 + (1.80 - 1.80i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03488152687153880897288268923, −9.471818179888510851693109643028, −8.523381051585743138863752362145, −7.34947079503130132306942878467, −6.84812607692469450249616796955, −6.06657787345295975477567072860, −5.03838377437609504201855286072, −3.75247959137520703159312487330, −2.55346717355752030214276263609, −0.34235357194183162307081458252,
0.994950300498789841991209068042, 2.45726890358848926591198555318, 3.67086663103021275378089632659, 4.77493030294767836222412989580, 5.96857871627968027446020652470, 7.06038202608279338491660467083, 7.87637687160076862515029502675, 8.489024439226068946759815149026, 9.702754773886603777456343424358, 9.998659762904731226910424819021