L(s) = 1 | + (0.913 + 1.77i)2-s − 1.73i·3-s + (−2.33 + 3.25i)4-s + 8.22·5-s + (3.08 − 1.58i)6-s + 2.64i·7-s + (−7.91 − 1.17i)8-s − 2.99·9-s + (7.51 + 14.6i)10-s + 4.58i·11-s + (5.63 + 4.03i)12-s + 10.9·13-s + (−4.70 + 2.41i)14-s − 14.2i·15-s + (−5.13 − 15.1i)16-s − 30.4·17-s + ⋯ |
L(s) = 1 | + (0.456 + 0.889i)2-s − 0.577i·3-s + (−0.582 + 0.812i)4-s + 1.64·5-s + (0.513 − 0.263i)6-s + 0.377i·7-s + (−0.989 − 0.147i)8-s − 0.333·9-s + (0.751 + 1.46i)10-s + 0.416i·11-s + (0.469 + 0.336i)12-s + 0.844·13-s + (−0.336 + 0.172i)14-s − 0.950i·15-s + (−0.321 − 0.947i)16-s − 1.79·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.582 - 0.812i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.582 - 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.58117 + 0.811991i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58117 + 0.811991i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.913 - 1.77i)T \) |
| 3 | \( 1 + 1.73iT \) |
| 7 | \( 1 - 2.64iT \) |
good | 5 | \( 1 - 8.22T + 25T^{2} \) |
| 11 | \( 1 - 4.58iT - 121T^{2} \) |
| 13 | \( 1 - 10.9T + 169T^{2} \) |
| 17 | \( 1 + 30.4T + 289T^{2} \) |
| 19 | \( 1 + 18.9iT - 361T^{2} \) |
| 23 | \( 1 + 37.7iT - 529T^{2} \) |
| 29 | \( 1 + 22.8T + 841T^{2} \) |
| 31 | \( 1 - 17.1iT - 961T^{2} \) |
| 37 | \( 1 + 4.34T + 1.36e3T^{2} \) |
| 41 | \( 1 + 11.8T + 1.68e3T^{2} \) |
| 43 | \( 1 - 22.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 55.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 40.2T + 2.80e3T^{2} \) |
| 59 | \( 1 - 21.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 74.5T + 3.72e3T^{2} \) |
| 67 | \( 1 + 16.0iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 69.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 36.1T + 5.32e3T^{2} \) |
| 79 | \( 1 - 119. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 25.9iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 144.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 129.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.02707217185151161324806456857, −13.26761250358466967045863013780, −12.66449557027781391463240164955, −10.99724995911524542818756517378, −9.335125948004392890141645874290, −8.576552681319538928674331814655, −6.77518087020506574350753942725, −6.17174369896681258628123987206, −4.83709541594587752145677306780, −2.40350246587486641820987436725,
1.90477972066787245772958305666, 3.72457680328923762346146643308, 5.33665332126294461451887004285, 6.27346393494905416088609743843, 8.825531970695266529882553585382, 9.682586983003327812182385984133, 10.58832094694639737314338540436, 11.45680781646567142592295105185, 13.26882092409695034052805589380, 13.49636253545399861043993599542