L(s) = 1 | + (0.883 + 0.641i)3-s + (−0.280 + 0.864i)5-s + (1.85 − 1.34i)7-s + (−0.558 − 1.71i)9-s + (0.176 − 3.31i)11-s + (−1.35 − 4.16i)13-s + (−0.802 + 0.583i)15-s + (1.56 − 4.81i)17-s + (−0.809 − 0.587i)19-s + 2.50·21-s − 0.664·23-s + (3.37 + 2.45i)25-s + (1.62 − 4.99i)27-s + (−2.82 + 2.05i)29-s + (3.04 + 9.38i)31-s + ⋯ |
L(s) = 1 | + (0.510 + 0.370i)3-s + (−0.125 + 0.386i)5-s + (0.701 − 0.509i)7-s + (−0.186 − 0.572i)9-s + (0.0532 − 0.998i)11-s + (−0.375 − 1.15i)13-s + (−0.207 + 0.150i)15-s + (0.379 − 1.16i)17-s + (−0.185 − 0.134i)19-s + 0.546·21-s − 0.138·23-s + (0.675 + 0.490i)25-s + (0.312 − 0.960i)27-s + (−0.525 + 0.381i)29-s + (0.547 + 1.68i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 836 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.746 + 0.664i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 836 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.746 + 0.664i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.68855 - 0.642647i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.68855 - 0.642647i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-0.176 + 3.31i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (-0.883 - 0.641i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (0.280 - 0.864i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-1.85 + 1.34i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.35 + 4.16i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-1.56 + 4.81i)T + (-13.7 - 9.99i)T^{2} \) |
| 23 | \( 1 + 0.664T + 23T^{2} \) |
| 29 | \( 1 + (2.82 - 2.05i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-3.04 - 9.38i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-2.85 + 2.07i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-3.82 - 2.77i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 2.17T + 43T^{2} \) |
| 47 | \( 1 + (2.97 + 2.16i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.36 - 4.19i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-3.30 + 2.40i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.675 + 2.07i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 2.51T + 67T^{2} \) |
| 71 | \( 1 + (-1.39 + 4.29i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (7.56 - 5.49i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.46 - 4.50i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-3.98 + 12.2i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 13.4T + 89T^{2} \) |
| 97 | \( 1 + (-4.67 - 14.3i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15130540636737023760121354950, −9.217823203568845951490486289117, −8.433670864715784151428578304058, −7.66242590234610811288701305249, −6.77751481367765967359165901660, −5.60896366237276067812379299908, −4.69646736032631827803451319437, −3.41582869713893047441230144288, −2.87697354202576701216866476955, −0.881960987933486226496913267336,
1.72944068160677614253607532638, 2.39581013560774322359078603059, 4.10513489637439500635042919430, 4.82539171715351075449847783262, 5.92191642900441695586949171114, 7.04194567720316447456573122739, 7.943028549552068348054234796846, 8.438260691871331001894207234195, 9.355034348029963917456878149534, 10.19396117521263277664230144768