Properties

Label 2-8330-1.1-c1-0-46
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.664·3-s + 4-s − 5-s + 0.664·6-s + 8-s − 2.55·9-s − 10-s − 6.52·11-s + 0.664·12-s + 3.80·13-s − 0.664·15-s + 16-s − 17-s − 2.55·18-s − 6.05·19-s − 20-s − 6.52·22-s − 6.84·23-s + 0.664·24-s + 25-s + 3.80·26-s − 3.69·27-s + 9.62·29-s − 0.664·30-s + 8.49·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.383·3-s + 0.5·4-s − 0.447·5-s + 0.271·6-s + 0.353·8-s − 0.852·9-s − 0.316·10-s − 1.96·11-s + 0.191·12-s + 1.05·13-s − 0.171·15-s + 0.250·16-s − 0.242·17-s − 0.602·18-s − 1.38·19-s − 0.223·20-s − 1.39·22-s − 1.42·23-s + 0.135·24-s + 0.200·25-s + 0.746·26-s − 0.711·27-s + 1.78·29-s − 0.121·30-s + 1.52·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.402351705\)
\(L(\frac12)\) \(\approx\) \(2.402351705\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 0.664T + 3T^{2} \)
11 \( 1 + 6.52T + 11T^{2} \)
13 \( 1 - 3.80T + 13T^{2} \)
19 \( 1 + 6.05T + 19T^{2} \)
23 \( 1 + 6.84T + 23T^{2} \)
29 \( 1 - 9.62T + 29T^{2} \)
31 \( 1 - 8.49T + 31T^{2} \)
37 \( 1 + 1.65T + 37T^{2} \)
41 \( 1 + 3.59T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 - 2.67T + 47T^{2} \)
53 \( 1 - 13.4T + 53T^{2} \)
59 \( 1 - 0.344T + 59T^{2} \)
61 \( 1 - 11.5T + 61T^{2} \)
67 \( 1 - 3.71T + 67T^{2} \)
71 \( 1 - 0.0105T + 71T^{2} \)
73 \( 1 - 7.93T + 73T^{2} \)
79 \( 1 + 0.721T + 79T^{2} \)
83 \( 1 + 6.22T + 83T^{2} \)
89 \( 1 + 6.23T + 89T^{2} \)
97 \( 1 - 17.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.995290443031139766806304857136, −7.08437906689349226060501963637, −6.20229180794426555334322837656, −5.79938798748570232534456315164, −4.93253292751157617672067576194, −4.23945775750399630596913048470, −3.53163729943448326798106707679, −2.54089652045214304805175099849, −2.34446802108004190605383207591, −0.63038978248335194283192340667, 0.63038978248335194283192340667, 2.34446802108004190605383207591, 2.54089652045214304805175099849, 3.53163729943448326798106707679, 4.23945775750399630596913048470, 4.93253292751157617672067576194, 5.79938798748570232534456315164, 6.20229180794426555334322837656, 7.08437906689349226060501963637, 7.995290443031139766806304857136

Graph of the $Z$-function along the critical line