Properties

Label 2-8330-1.1-c1-0-36
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.35·3-s + 4-s − 5-s − 1.35·6-s + 8-s − 1.17·9-s − 10-s − 2.93·11-s − 1.35·12-s + 4.16·13-s + 1.35·15-s + 16-s − 17-s − 1.17·18-s − 2.23·19-s − 20-s − 2.93·22-s + 8.69·23-s − 1.35·24-s + 25-s + 4.16·26-s + 5.64·27-s + 2.53·29-s + 1.35·30-s − 9.15·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.780·3-s + 0.5·4-s − 0.447·5-s − 0.552·6-s + 0.353·8-s − 0.390·9-s − 0.316·10-s − 0.886·11-s − 0.390·12-s + 1.15·13-s + 0.349·15-s + 0.250·16-s − 0.242·17-s − 0.276·18-s − 0.511·19-s − 0.223·20-s − 0.626·22-s + 1.81·23-s − 0.276·24-s + 0.200·25-s + 0.816·26-s + 1.08·27-s + 0.470·29-s + 0.246·30-s − 1.64·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.714865040\)
\(L(\frac12)\) \(\approx\) \(1.714865040\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + 1.35T + 3T^{2} \)
11 \( 1 + 2.93T + 11T^{2} \)
13 \( 1 - 4.16T + 13T^{2} \)
19 \( 1 + 2.23T + 19T^{2} \)
23 \( 1 - 8.69T + 23T^{2} \)
29 \( 1 - 2.53T + 29T^{2} \)
31 \( 1 + 9.15T + 31T^{2} \)
37 \( 1 + 0.103T + 37T^{2} \)
41 \( 1 + 4.99T + 41T^{2} \)
43 \( 1 - 0.552T + 43T^{2} \)
47 \( 1 + 9.03T + 47T^{2} \)
53 \( 1 + 0.109T + 53T^{2} \)
59 \( 1 + 8.41T + 59T^{2} \)
61 \( 1 - 6.82T + 61T^{2} \)
67 \( 1 - 3.16T + 67T^{2} \)
71 \( 1 - 1.49T + 71T^{2} \)
73 \( 1 - 6.19T + 73T^{2} \)
79 \( 1 + 6.69T + 79T^{2} \)
83 \( 1 + 10.0T + 83T^{2} \)
89 \( 1 + 1.79T + 89T^{2} \)
97 \( 1 - 0.714T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64308613887293886984414116861, −6.88966524951070900561760804252, −6.35956975407520625922289085747, −5.58857817978569278806217261501, −5.09660391046139249219269733173, −4.44661682442632718680647269326, −3.44253350548832584140818117964, −2.95677135976353422558835390975, −1.79034892258982050589240464390, −0.59252730779496877820146982347, 0.59252730779496877820146982347, 1.79034892258982050589240464390, 2.95677135976353422558835390975, 3.44253350548832584140818117964, 4.44661682442632718680647269326, 5.09660391046139249219269733173, 5.58857817978569278806217261501, 6.35956975407520625922289085747, 6.88966524951070900561760804252, 7.64308613887293886984414116861

Graph of the $Z$-function along the critical line