Properties

Label 2-8330-1.1-c1-0-145
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3.38·3-s + 4-s − 5-s + 3.38·6-s + 8-s + 8.42·9-s − 10-s − 4.17·11-s + 3.38·12-s + 3.15·13-s − 3.38·15-s + 16-s − 17-s + 8.42·18-s + 7.10·19-s − 20-s − 4.17·22-s − 3.81·23-s + 3.38·24-s + 25-s + 3.15·26-s + 18.3·27-s + 0.468·29-s − 3.38·30-s − 1.30·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.95·3-s + 0.5·4-s − 0.447·5-s + 1.37·6-s + 0.353·8-s + 2.80·9-s − 0.316·10-s − 1.25·11-s + 0.975·12-s + 0.874·13-s − 0.872·15-s + 0.250·16-s − 0.242·17-s + 1.98·18-s + 1.63·19-s − 0.223·20-s − 0.889·22-s − 0.795·23-s + 0.689·24-s + 0.200·25-s + 0.618·26-s + 3.52·27-s + 0.0870·29-s − 0.617·30-s − 0.233·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.028465769\)
\(L(\frac12)\) \(\approx\) \(7.028465769\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 3.38T + 3T^{2} \)
11 \( 1 + 4.17T + 11T^{2} \)
13 \( 1 - 3.15T + 13T^{2} \)
19 \( 1 - 7.10T + 19T^{2} \)
23 \( 1 + 3.81T + 23T^{2} \)
29 \( 1 - 0.468T + 29T^{2} \)
31 \( 1 + 1.30T + 31T^{2} \)
37 \( 1 - 4.88T + 37T^{2} \)
41 \( 1 - 9.05T + 41T^{2} \)
43 \( 1 + 6.82T + 43T^{2} \)
47 \( 1 + 11.2T + 47T^{2} \)
53 \( 1 - 7.54T + 53T^{2} \)
59 \( 1 - 1.40T + 59T^{2} \)
61 \( 1 - 15.0T + 61T^{2} \)
67 \( 1 - 2.50T + 67T^{2} \)
71 \( 1 - 3.87T + 71T^{2} \)
73 \( 1 + 11.3T + 73T^{2} \)
79 \( 1 - 12.0T + 79T^{2} \)
83 \( 1 + 6.56T + 83T^{2} \)
89 \( 1 + 5.67T + 89T^{2} \)
97 \( 1 - 4.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.895283596477995554840339529629, −7.33406304000428023988487050634, −6.62332683536447948621269410355, −5.56712437695153806626523766141, −4.79442389377014925568502099453, −3.98196368532665155610999105434, −3.46730487329384879705500626875, −2.81689305760845489906284429932, −2.17635806815590963347803074170, −1.13421006274759990227013616562, 1.13421006274759990227013616562, 2.17635806815590963347803074170, 2.81689305760845489906284429932, 3.46730487329384879705500626875, 3.98196368532665155610999105434, 4.79442389377014925568502099453, 5.56712437695153806626523766141, 6.62332683536447948621269410355, 7.33406304000428023988487050634, 7.895283596477995554840339529629

Graph of the $Z$-function along the critical line