| L(s) = 1 | + (−2.14 + 0.888i)2-s + (−0.289 − 0.0576i)3-s + (2.40 − 2.40i)4-s + (0.677 + 1.01i)5-s + (0.673 − 0.133i)6-s + (−1.24 + 2.99i)8-s + (−2.69 − 1.11i)9-s + (−2.35 − 1.57i)10-s + (2.84 − 0.565i)11-s + (−0.834 + 0.557i)12-s + (−0.992 + 0.992i)13-s + (−0.138 − 0.333i)15-s − 0.737i·16-s + (1.27 − 3.92i)17-s + 6.76·18-s + (1.25 + 3.02i)19-s + ⋯ |
| L(s) = 1 | + (−1.51 + 0.628i)2-s + (−0.167 − 0.0332i)3-s + (1.20 − 1.20i)4-s + (0.303 + 0.453i)5-s + (0.274 − 0.0546i)6-s + (−0.438 + 1.05i)8-s + (−0.896 − 0.371i)9-s + (−0.745 − 0.497i)10-s + (0.856 − 0.170i)11-s + (−0.240 + 0.160i)12-s + (−0.275 + 0.275i)13-s + (−0.0356 − 0.0860i)15-s − 0.184i·16-s + (0.308 − 0.951i)17-s + 1.59·18-s + (0.287 + 0.694i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.298i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 - 0.298i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.652952 + 0.0996561i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.652952 + 0.0996561i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 17 | \( 1 + (-1.27 + 3.92i)T \) |
| good | 2 | \( 1 + (2.14 - 0.888i)T + (1.41 - 1.41i)T^{2} \) |
| 3 | \( 1 + (0.289 + 0.0576i)T + (2.77 + 1.14i)T^{2} \) |
| 5 | \( 1 + (-0.677 - 1.01i)T + (-1.91 + 4.61i)T^{2} \) |
| 11 | \( 1 + (-2.84 + 0.565i)T + (10.1 - 4.20i)T^{2} \) |
| 13 | \( 1 + (0.992 - 0.992i)T - 13iT^{2} \) |
| 19 | \( 1 + (-1.25 - 3.02i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (-0.353 - 1.77i)T + (-21.2 + 8.80i)T^{2} \) |
| 29 | \( 1 + (1.94 + 2.90i)T + (-11.0 + 26.7i)T^{2} \) |
| 31 | \( 1 + (0.338 - 1.70i)T + (-28.6 - 11.8i)T^{2} \) |
| 37 | \( 1 + (-0.119 + 0.603i)T + (-34.1 - 14.1i)T^{2} \) |
| 41 | \( 1 + (-4.22 + 6.31i)T + (-15.6 - 37.8i)T^{2} \) |
| 43 | \( 1 + (2.34 + 0.969i)T + (30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + (-8.15 + 8.15i)T - 47iT^{2} \) |
| 53 | \( 1 + (7.36 - 3.05i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-7.82 - 3.24i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-8.05 - 5.37i)T + (23.3 + 56.3i)T^{2} \) |
| 67 | \( 1 + 4.17iT - 67T^{2} \) |
| 71 | \( 1 + (-3.14 + 15.8i)T + (-65.5 - 27.1i)T^{2} \) |
| 73 | \( 1 + (-7.64 - 11.4i)T + (-27.9 + 67.4i)T^{2} \) |
| 79 | \( 1 + (-11.7 + 2.32i)T + (72.9 - 30.2i)T^{2} \) |
| 83 | \( 1 + (7.64 - 3.16i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-6.08 - 6.08i)T + 89iT^{2} \) |
| 97 | \( 1 + (3.34 - 2.23i)T + (37.1 - 89.6i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.979346631253842381893045255257, −9.292570402021926291794762078154, −8.707529421603585888266400390950, −7.73443183769389289204856753212, −6.92887840524880334429374127064, −6.24135399751136271575153473456, −5.41010581196653235040562669744, −3.69483071416883904974319893210, −2.27135927009232604090544602518, −0.73902780984679227305838165247,
0.959169238840919491636819554037, 2.14697932540976122272001797434, 3.30535586025653006054741087401, 4.84492019236232536341238384095, 5.90640412189236570767561560627, 7.02416798259618153846069674817, 7.999877791185735511240099331556, 8.674247494270873922565566090024, 9.353499537367482310433151345725, 9.996335940840335837327111025625