L(s) = 1 | + 9.27·3-s + 2.27i·5-s + 28.5i·7-s + 59.0·9-s − 0.604i·11-s + (19.1 − 42.7i)13-s + 21.1i·15-s − 41.0·17-s + 129. i·19-s + 264. i·21-s − 73.8·23-s + 119.·25-s + 297.·27-s + 214.·29-s − 126. i·31-s + ⋯ |
L(s) = 1 | + 1.78·3-s + 0.203i·5-s + 1.54i·7-s + 2.18·9-s − 0.0165i·11-s + (0.408 − 0.912i)13-s + 0.364i·15-s − 0.585·17-s + 1.56i·19-s + 2.75i·21-s − 0.669·23-s + 0.958·25-s + 2.11·27-s + 1.37·29-s − 0.731i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(4.114665536\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.114665536\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-19.1 + 42.7i)T \) |
good | 3 | \( 1 - 9.27T + 27T^{2} \) |
| 5 | \( 1 - 2.27iT - 125T^{2} \) |
| 7 | \( 1 - 28.5iT - 343T^{2} \) |
| 11 | \( 1 + 0.604iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 41.0T + 4.91e3T^{2} \) |
| 19 | \( 1 - 129. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 73.8T + 1.21e4T^{2} \) |
| 29 | \( 1 - 214.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 126. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 309. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 88.1iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 245.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 68.5iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 613.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 840. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 587.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 606. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 507. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 177. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 143.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 773. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.40e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 468. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.853776290220865665895246710368, −8.850548520344249534692684219771, −8.407207386837760154005792103853, −7.85151908102817917508387629719, −6.58934494473007177151674430596, −5.63600110835306939484312506194, −4.33150486544975578352257692545, −3.17375142663940143887773570585, −2.62168961934050097099764306343, −1.57291508683541684003750512111,
0.871888879718714123598411209376, 2.06797626378793877395496583179, 3.17874824717472864017214831098, 4.11781250308981528324771546285, 4.68506021509933168255486299065, 6.79912138879293298743347119541, 7.05074696127921545591395817263, 8.130148483197165966579364498517, 8.812271879007861236941796484653, 9.434850065756305541442788586433