Properties

Label 2-832-13.12-c3-0-57
Degree $2$
Conductor $832$
Sign $-0.786 + 0.618i$
Analytic cond. $49.0895$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.78·3-s − 7.31i·5-s + 0.135i·7-s + 33.6·9-s − 48.8i·11-s + (−36.8 + 28.9i)13-s + 56.9i·15-s + 68.4·17-s − 83.8i·19-s − 1.05i·21-s − 11.7·23-s + 71.5·25-s − 51.5·27-s + 177.·29-s − 197. i·31-s + ⋯
L(s)  = 1  − 1.49·3-s − 0.654i·5-s + 0.00733i·7-s + 1.24·9-s − 1.33i·11-s + (−0.786 + 0.618i)13-s + 0.980i·15-s + 0.976·17-s − 1.01i·19-s − 0.0109i·21-s − 0.106·23-s + 0.572·25-s − 0.367·27-s + 1.13·29-s − 1.14i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.786 + 0.618i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.786 + 0.618i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $-0.786 + 0.618i$
Analytic conductor: \(49.0895\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{832} (129, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :3/2),\ -0.786 + 0.618i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7613294563\)
\(L(\frac12)\) \(\approx\) \(0.7613294563\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + (36.8 - 28.9i)T \)
good3 \( 1 + 7.78T + 27T^{2} \)
5 \( 1 + 7.31iT - 125T^{2} \)
7 \( 1 - 0.135iT - 343T^{2} \)
11 \( 1 + 48.8iT - 1.33e3T^{2} \)
17 \( 1 - 68.4T + 4.91e3T^{2} \)
19 \( 1 + 83.8iT - 6.85e3T^{2} \)
23 \( 1 + 11.7T + 1.21e4T^{2} \)
29 \( 1 - 177.T + 2.43e4T^{2} \)
31 \( 1 + 197. iT - 2.97e4T^{2} \)
37 \( 1 - 283. iT - 5.06e4T^{2} \)
41 \( 1 + 70.5iT - 6.89e4T^{2} \)
43 \( 1 - 28.3T + 7.95e4T^{2} \)
47 \( 1 - 536. iT - 1.03e5T^{2} \)
53 \( 1 - 5.84T + 1.48e5T^{2} \)
59 \( 1 - 304. iT - 2.05e5T^{2} \)
61 \( 1 - 378.T + 2.26e5T^{2} \)
67 \( 1 + 698. iT - 3.00e5T^{2} \)
71 \( 1 + 922. iT - 3.57e5T^{2} \)
73 \( 1 + 1.14e3iT - 3.89e5T^{2} \)
79 \( 1 + 464.T + 4.93e5T^{2} \)
83 \( 1 - 328. iT - 5.71e5T^{2} \)
89 \( 1 + 737. iT - 7.04e5T^{2} \)
97 \( 1 + 944. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.578733344701298831107663370446, −8.720467181365216666181925310946, −7.70120473276976896762068676365, −6.61576256471092598199162765560, −5.93074676261330531880688535361, −5.07802026673114439205241156595, −4.43760040217727105893754802167, −2.91291612108867297582856427839, −1.11992328574598842397951162804, −0.33191973389203181519270804770, 1.09981190379500636180393326832, 2.57049483016347570260414889545, 3.98406073945908983732456851025, 5.12272945297214465526420526565, 5.61895739832374200261396950609, 6.83073229355543042340978114660, 7.17408845392518287837998689831, 8.315796131921344660973964149814, 9.859806304508436720522596981164, 10.21194845695341330814742047452

Graph of the $Z$-function along the critical line