Properties

Label 4-832e2-1.1-c3e2-0-14
Degree $4$
Conductor $692224$
Sign $1$
Analytic cond. $2409.78$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 3·5-s − 25·7-s − 29·9-s + 56·11-s + 26·13-s + 9·15-s − 13·17-s + 124·19-s − 75·21-s − 172·23-s − 79·25-s − 120·27-s − 196·29-s − 78·31-s + 168·33-s − 75·35-s − 161·37-s + 78·39-s + 234·41-s − 135·43-s − 87·45-s − 237·47-s − 199·49-s − 39·51-s − 666·53-s + 168·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.268·5-s − 1.34·7-s − 1.07·9-s + 1.53·11-s + 0.554·13-s + 0.154·15-s − 0.185·17-s + 1.49·19-s − 0.779·21-s − 1.55·23-s − 0.631·25-s − 0.855·27-s − 1.25·29-s − 0.451·31-s + 0.886·33-s − 0.362·35-s − 0.715·37-s + 0.320·39-s + 0.891·41-s − 0.478·43-s − 0.288·45-s − 0.735·47-s − 0.580·49-s − 0.107·51-s − 1.72·53-s + 0.411·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 692224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 692224 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(692224\)    =    \(2^{12} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2409.78\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 692224,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
13$C_1$ \( ( 1 - p T )^{2} \)
good3$D_{4}$ \( 1 - p T + 38 T^{2} - p^{4} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 - 3 T + 88 T^{2} - 3 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 25 T + 824 T^{2} + 25 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 56 T + 3154 T^{2} - 56 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 13 T + 3280 T^{2} + 13 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 124 T + 16394 T^{2} - 124 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 172 T + 29102 T^{2} + 172 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 196 T + 53710 T^{2} + 196 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 78 T + 40006 T^{2} + 78 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 161 T + 35352 T^{2} + 161 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 234 T + 40498 T^{2} - 234 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 135 T + 12442 T^{2} + 135 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 237 T + 221232 T^{2} + 237 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 666 T + 406818 T^{2} + 666 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 136 T + 57682 T^{2} + 136 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 146 T + 457466 T^{2} - 146 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 4 T + 526778 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 563 T + 787016 T^{2} + 563 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1480 T + 1311326 T^{2} + 1480 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 896 T + 1176270 T^{2} + 896 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1902 T + 2047318 T^{2} + 1902 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 272 T + 341902 T^{2} + 272 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 2160 T + 2346718 T^{2} + 2160 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.699161966533209872431477867055, −9.126977453473146178824240407708, −8.749121589623530528510096087557, −8.684541101266551973446063909219, −7.77973703247188839483297146950, −7.61458172548842676941970751040, −7.01686697088383768797679247165, −6.44023316269378989692994759614, −6.06236952559241392372100917906, −5.88332149598400480431352359264, −5.34884814522129355674257243789, −4.54773932915670220074026652530, −3.79467790586929594959321251044, −3.68443769952288369477306483403, −3.04990386458146553001191871842, −2.73563150337890594693401693470, −1.64035502780962391854262197441, −1.48026392733629552604050118012, 0, 0, 1.48026392733629552604050118012, 1.64035502780962391854262197441, 2.73563150337890594693401693470, 3.04990386458146553001191871842, 3.68443769952288369477306483403, 3.79467790586929594959321251044, 4.54773932915670220074026652530, 5.34884814522129355674257243789, 5.88332149598400480431352359264, 6.06236952559241392372100917906, 6.44023316269378989692994759614, 7.01686697088383768797679247165, 7.61458172548842676941970751040, 7.77973703247188839483297146950, 8.684541101266551973446063909219, 8.749121589623530528510096087557, 9.126977453473146178824240407708, 9.699161966533209872431477867055

Graph of the $Z$-function along the critical line