Properties

Label 2-832-1.1-c3-0-71
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $49.0895$
Root an. cond. $7.00639$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 17·5-s − 35·7-s − 26·9-s − 2·11-s − 13·13-s − 17·15-s − 19·17-s − 94·19-s − 35·21-s − 72·23-s + 164·25-s − 53·27-s − 246·29-s − 100·31-s − 2·33-s + 595·35-s + 11·37-s − 13·39-s − 280·41-s − 241·43-s + 442·45-s + 137·47-s + 882·49-s − 19·51-s + 232·53-s + 34·55-s + ⋯
L(s)  = 1  + 0.192·3-s − 1.52·5-s − 1.88·7-s − 0.962·9-s − 0.0548·11-s − 0.277·13-s − 0.292·15-s − 0.271·17-s − 1.13·19-s − 0.363·21-s − 0.652·23-s + 1.31·25-s − 0.377·27-s − 1.57·29-s − 0.579·31-s − 0.0105·33-s + 2.87·35-s + 0.0488·37-s − 0.0533·39-s − 1.06·41-s − 0.854·43-s + 1.46·45-s + 0.425·47-s + 18/7·49-s − 0.0521·51-s + 0.601·53-s + 0.0833·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(49.0895\)
Root analytic conductor: \(7.00639\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 832,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + p T \)
good3 \( 1 - T + p^{3} T^{2} \)
5 \( 1 + 17 T + p^{3} T^{2} \)
7 \( 1 + 5 p T + p^{3} T^{2} \)
11 \( 1 + 2 T + p^{3} T^{2} \)
17 \( 1 + 19 T + p^{3} T^{2} \)
19 \( 1 + 94 T + p^{3} T^{2} \)
23 \( 1 + 72 T + p^{3} T^{2} \)
29 \( 1 + 246 T + p^{3} T^{2} \)
31 \( 1 + 100 T + p^{3} T^{2} \)
37 \( 1 - 11 T + p^{3} T^{2} \)
41 \( 1 + 280 T + p^{3} T^{2} \)
43 \( 1 + 241 T + p^{3} T^{2} \)
47 \( 1 - 137 T + p^{3} T^{2} \)
53 \( 1 - 232 T + p^{3} T^{2} \)
59 \( 1 - 386 T + p^{3} T^{2} \)
61 \( 1 + 64 T + p^{3} T^{2} \)
67 \( 1 - 10 p T + p^{3} T^{2} \)
71 \( 1 - 55 T + p^{3} T^{2} \)
73 \( 1 + 838 T + p^{3} T^{2} \)
79 \( 1 - 1016 T + p^{3} T^{2} \)
83 \( 1 + 420 T + p^{3} T^{2} \)
89 \( 1 + 934 T + p^{3} T^{2} \)
97 \( 1 + 1154 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.893608821283458842455491846868, −8.201555032134678594757629789613, −7.22179551992714983732938468590, −6.50039080846642568797072053797, −5.49333246523924985896198621066, −3.98841798613362374558482410876, −3.52051600178003154029590761078, −2.48185677046734381778508634141, 0, 0, 2.48185677046734381778508634141, 3.52051600178003154029590761078, 3.98841798613362374558482410876, 5.49333246523924985896198621066, 6.50039080846642568797072053797, 7.22179551992714983732938468590, 8.201555032134678594757629789613, 8.893608821283458842455491846868

Graph of the $Z$-function along the critical line