L(s) = 1 | + 5-s + (2 + 3.46i)7-s + (1.5 + 2.59i)9-s + (−2 + 3.46i)11-s + (−3.5 − 0.866i)13-s + (−1.5 − 2.59i)17-s + (−2 + 3.46i)23-s − 4·25-s + (−0.5 + 0.866i)29-s − 4·31-s + (2 + 3.46i)35-s + (1.5 − 2.59i)37-s + (4.5 − 7.79i)41-s + (4 + 6.92i)43-s + (1.5 + 2.59i)45-s + ⋯ |
L(s) = 1 | + 0.447·5-s + (0.755 + 1.30i)7-s + (0.5 + 0.866i)9-s + (−0.603 + 1.04i)11-s + (−0.970 − 0.240i)13-s + (−0.363 − 0.630i)17-s + (−0.417 + 0.722i)23-s − 0.800·25-s + (−0.0928 + 0.160i)29-s − 0.718·31-s + (0.338 + 0.585i)35-s + (0.246 − 0.427i)37-s + (0.702 − 1.21i)41-s + (0.609 + 1.05i)43-s + (0.223 + 0.387i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07984 + 1.09377i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07984 + 1.09377i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - T + 5T^{2} \) |
| 7 | \( 1 + (-2 - 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (-1.5 + 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 + 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 - 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2 - 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4 + 6.92i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 11T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31567635764814009072302269361, −9.601057435850425416215061065492, −8.846492749765174106744793350303, −7.64797191801801197895584378375, −7.34479913838111933448682856258, −5.71970459236293943705821832730, −5.23084065893046145706598209889, −4.35472724347797408580304273296, −2.41366888077252328930287672878, −2.04925435823173331510830168252,
0.74054833210351887743721188169, 2.18890700612024195662873641123, 3.71704014836688164254073417259, 4.46094174528083039406354610697, 5.62115312873785491059704554166, 6.58063264727728883464494845149, 7.46217192126944725274085356497, 8.199244764755367391146832332223, 9.252316811357553784419076310728, 10.12629485787800754778167674234