| L(s) = 1 | + 5-s + (−2 + 3.46i)7-s + (1.5 − 2.59i)9-s + (2 + 3.46i)11-s + (−3.5 + 0.866i)13-s + (−1.5 + 2.59i)17-s + (2 + 3.46i)23-s − 4·25-s + (−0.5 − 0.866i)29-s + 4·31-s + (−2 + 3.46i)35-s + (1.5 + 2.59i)37-s + (4.5 + 7.79i)41-s + (−4 + 6.92i)43-s + (1.5 − 2.59i)45-s + ⋯ |
| L(s) = 1 | + 0.447·5-s + (−0.755 + 1.30i)7-s + (0.5 − 0.866i)9-s + (0.603 + 1.04i)11-s + (−0.970 + 0.240i)13-s + (−0.363 + 0.630i)17-s + (0.417 + 0.722i)23-s − 0.800·25-s + (−0.0928 − 0.160i)29-s + 0.718·31-s + (−0.338 + 0.585i)35-s + (0.246 + 0.427i)37-s + (0.702 + 1.21i)41-s + (−0.609 + 1.05i)43-s + (0.223 − 0.387i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.946506 + 0.934446i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.946506 + 0.934446i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.5 - 0.866i)T \) |
| good | 3 | \( 1 + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - T + 5T^{2} \) |
| 7 | \( 1 + (2 - 3.46i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2 - 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (-1.5 - 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 - 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4 - 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4 + 6.92i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 11T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.912774933481084841738425893719, −9.667946338280219706160573609572, −9.065506901217086855953726607050, −7.87391703318931291431397587431, −6.67709786160563487344821808809, −6.29006051890418668115377233149, −5.14831650351877409421309063774, −4.08232766861101643422062761620, −2.81806566710019977771980265102, −1.73661616322803134032375085899,
0.64933830971435458257789204675, 2.32191283411997654003788012410, 3.58262191509224492745541645522, 4.54289345191905121163504779928, 5.59420632409849270981083837990, 6.73852918582159236221268890460, 7.24928695294214589602560082542, 8.265093777557603180460559103113, 9.351040714002337928779043187261, 10.08596955769785619183873572359