Properties

Label 2-91e2-1.1-c1-0-401
Degree $2$
Conductor $8281$
Sign $1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.73·2-s + 1.15·3-s + 5.47·4-s + 1.87·5-s + 3.16·6-s + 9.50·8-s − 1.66·9-s + 5.13·10-s − 2.29·11-s + 6.32·12-s + 2.17·15-s + 15.0·16-s + 6.07·17-s − 4.54·18-s − 5.15·19-s + 10.2·20-s − 6.28·22-s + 4.41·23-s + 10.9·24-s − 1.47·25-s − 5.39·27-s + 7.50·29-s + 5.93·30-s + 4.33·31-s + 22.0·32-s − 2.65·33-s + 16.6·34-s + ⋯
L(s)  = 1  + 1.93·2-s + 0.667·3-s + 2.73·4-s + 0.839·5-s + 1.29·6-s + 3.36·8-s − 0.554·9-s + 1.62·10-s − 0.693·11-s + 1.82·12-s + 0.560·15-s + 3.75·16-s + 1.47·17-s − 1.07·18-s − 1.18·19-s + 2.29·20-s − 1.34·22-s + 0.921·23-s + 2.24·24-s − 0.295·25-s − 1.03·27-s + 1.39·29-s + 1.08·30-s + 0.778·31-s + 3.90·32-s − 0.462·33-s + 2.84·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(11.47844177\)
\(L(\frac12)\) \(\approx\) \(11.47844177\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 - 2.73T + 2T^{2} \)
3 \( 1 - 1.15T + 3T^{2} \)
5 \( 1 - 1.87T + 5T^{2} \)
11 \( 1 + 2.29T + 11T^{2} \)
17 \( 1 - 6.07T + 17T^{2} \)
19 \( 1 + 5.15T + 19T^{2} \)
23 \( 1 - 4.41T + 23T^{2} \)
29 \( 1 - 7.50T + 29T^{2} \)
31 \( 1 - 4.33T + 31T^{2} \)
37 \( 1 - 3.16T + 37T^{2} \)
41 \( 1 - 2.45T + 41T^{2} \)
43 \( 1 - 2.17T + 43T^{2} \)
47 \( 1 + 8.90T + 47T^{2} \)
53 \( 1 - 8.10T + 53T^{2} \)
59 \( 1 + 7.13T + 59T^{2} \)
61 \( 1 + 8.00T + 61T^{2} \)
67 \( 1 - 1.15T + 67T^{2} \)
71 \( 1 - 5.11T + 71T^{2} \)
73 \( 1 + 1.96T + 73T^{2} \)
79 \( 1 - 3.81T + 79T^{2} \)
83 \( 1 - 2.49T + 83T^{2} \)
89 \( 1 + 10.4T + 89T^{2} \)
97 \( 1 + 2.51T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78535484635518835883090355123, −6.75830595730628329730983243203, −6.19153511928703768243820481403, −5.62100351288396128796777014511, −5.04687424303513330573436947392, −4.31509346675617922076647481817, −3.41274816386459325172920830249, −2.77063410054549385535896700509, −2.37526080034769565449732499993, −1.33946489288962216060031811116, 1.33946489288962216060031811116, 2.37526080034769565449732499993, 2.77063410054549385535896700509, 3.41274816386459325172920830249, 4.31509346675617922076647481817, 5.04687424303513330573436947392, 5.62100351288396128796777014511, 6.19153511928703768243820481403, 6.75830595730628329730983243203, 7.78535484635518835883090355123

Graph of the $Z$-function along the critical line