| L(s) = 1 | − 9.02i·5-s − 2.91·7-s + 14.2i·11-s − 12.0·13-s − 29.9i·17-s + 0.454·19-s + 4.79i·23-s − 56.5·25-s − 11.9i·29-s − 2.91·31-s + 26.3i·35-s − 8.71·37-s + 48.3i·41-s − 7.20·43-s + 86.6i·47-s + ⋯ |
| L(s) = 1 | − 1.80i·5-s − 0.416·7-s + 1.29i·11-s − 0.930·13-s − 1.76i·17-s + 0.0239·19-s + 0.208i·23-s − 2.26·25-s − 0.413i·29-s − 0.0941·31-s + 0.752i·35-s − 0.235·37-s + 1.18i·41-s − 0.167·43-s + 1.84i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.2271662210\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2271662210\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 23 | \( 1 - 4.79iT \) |
| good | 5 | \( 1 + 9.02iT - 25T^{2} \) |
| 7 | \( 1 + 2.91T + 49T^{2} \) |
| 11 | \( 1 - 14.2iT - 121T^{2} \) |
| 13 | \( 1 + 12.0T + 169T^{2} \) |
| 17 | \( 1 + 29.9iT - 289T^{2} \) |
| 19 | \( 1 - 0.454T + 361T^{2} \) |
| 29 | \( 1 + 11.9iT - 841T^{2} \) |
| 31 | \( 1 + 2.91T + 961T^{2} \) |
| 37 | \( 1 + 8.71T + 1.36e3T^{2} \) |
| 41 | \( 1 - 48.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 7.20T + 1.84e3T^{2} \) |
| 47 | \( 1 - 86.6iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 52.9iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 7.37iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 0.539T + 3.72e3T^{2} \) |
| 67 | \( 1 + 29.5T + 4.48e3T^{2} \) |
| 71 | \( 1 - 79.0iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 24.9T + 5.32e3T^{2} \) |
| 79 | \( 1 + 147.T + 6.24e3T^{2} \) |
| 83 | \( 1 + 111. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 42.8iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 59.7T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.660311690576274003255109420981, −8.849701062485596779776894477424, −7.76294669194065507748680884989, −7.13102989528913180104062113254, −5.78578844225775765834944147297, −4.75305860561401216816989822328, −4.50556403080178279487770620450, −2.76171957746924006547280543152, −1.42482384678850932977240771424, −0.07396563123345468736963978273,
2.10864495798692065023750931409, 3.19629240555094966374555596383, 3.80391112358663877722353596227, 5.49651690501909150338809066175, 6.34354436424423869647444297359, 6.92838708985239732816594006719, 7.895777690601270824547440215317, 8.784834776720293369932085842588, 10.02461530797751789870607479069, 10.47939456940140400096921030986