L(s) = 1 | + (−1.11 + 0.872i)2-s + (0.477 − 1.94i)4-s − 0.970i·5-s + 4.31·7-s + (1.16 + 2.57i)8-s + (0.846 + 1.07i)10-s + 3.90·11-s + 1.84·13-s + (−4.80 + 3.76i)14-s + (−3.54 − 1.85i)16-s − 0.465i·17-s − 6.89·19-s + (−1.88 − 0.463i)20-s + (−4.34 + 3.40i)22-s + (−1.65 − 4.50i)23-s + ⋯ |
L(s) = 1 | + (−0.786 + 0.617i)2-s + (0.238 − 0.971i)4-s − 0.433i·5-s + 1.63·7-s + (0.411 + 0.911i)8-s + (0.267 + 0.341i)10-s + 1.17·11-s + 0.511·13-s + (−1.28 + 1.00i)14-s + (−0.886 − 0.463i)16-s − 0.112i·17-s − 1.58·19-s + (−0.421 − 0.103i)20-s + (−0.925 + 0.726i)22-s + (−0.345 − 0.938i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.111i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.111i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34992 + 0.0752489i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34992 + 0.0752489i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.11 - 0.872i)T \) |
| 3 | \( 1 \) |
| 23 | \( 1 + (1.65 + 4.50i)T \) |
good | 5 | \( 1 + 0.970iT - 5T^{2} \) |
| 7 | \( 1 - 4.31T + 7T^{2} \) |
| 11 | \( 1 - 3.90T + 11T^{2} \) |
| 13 | \( 1 - 1.84T + 13T^{2} \) |
| 17 | \( 1 + 0.465iT - 17T^{2} \) |
| 19 | \( 1 + 6.89T + 19T^{2} \) |
| 29 | \( 1 + 1.41T + 29T^{2} \) |
| 31 | \( 1 + 2.44iT - 31T^{2} \) |
| 37 | \( 1 - 11.3iT - 37T^{2} \) |
| 41 | \( 1 - 2.17T + 41T^{2} \) |
| 43 | \( 1 - 5.37T + 43T^{2} \) |
| 47 | \( 1 + 8.65iT - 47T^{2} \) |
| 53 | \( 1 - 10.2iT - 53T^{2} \) |
| 59 | \( 1 + 8.30iT - 59T^{2} \) |
| 61 | \( 1 + 7.91iT - 61T^{2} \) |
| 67 | \( 1 - 2.57T + 67T^{2} \) |
| 71 | \( 1 - 6.53iT - 71T^{2} \) |
| 73 | \( 1 + 1.48T + 73T^{2} \) |
| 79 | \( 1 + 12.2T + 79T^{2} \) |
| 83 | \( 1 - 10.1T + 83T^{2} \) |
| 89 | \( 1 - 4.10iT - 89T^{2} \) |
| 97 | \( 1 + 5.32iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20139358845313530224078592019, −9.011579775820985937723241776927, −8.549054649448875238633999361722, −7.951704949577847232174863462853, −6.80991145546285679724625885065, −6.06995481359429834920554121211, −4.89548234631967319450828771386, −4.25225012209184615089273949122, −2.09003681656168769646856462076, −1.09245457731062068928521042786,
1.31293597674881945814447065642, 2.23343174491869915342394760533, 3.74507112251372010490528924254, 4.48241237219863440851546543958, 5.97392487012365581890126701310, 7.03667992994631170377941534174, 7.82147558054999238256412404771, 8.691880154589441181874367276808, 9.177027543080106963592078138289, 10.47318631520165685374089614237