| L(s) = 1 | + (1.36 + 0.377i)2-s + (1.71 + 1.02i)4-s − 2.63i·5-s + 3.76·7-s + (1.94 + 2.04i)8-s + (0.995 − 3.59i)10-s + 0.443·11-s − 3.89·13-s + (5.12 + 1.42i)14-s + (1.88 + 3.52i)16-s − 5.41i·17-s + 0.874·19-s + (2.71 − 4.52i)20-s + (0.605 + 0.167i)22-s + (−4.40 + 1.88i)23-s + ⋯ |
| L(s) = 1 | + (0.963 + 0.266i)2-s + (0.857 + 0.514i)4-s − 1.17i·5-s + 1.42·7-s + (0.689 + 0.724i)8-s + (0.314 − 1.13i)10-s + 0.133·11-s − 1.08·13-s + (1.37 + 0.379i)14-s + (0.470 + 0.882i)16-s − 1.31i·17-s + 0.200·19-s + (0.606 − 1.01i)20-s + (0.128 + 0.0357i)22-s + (−0.919 + 0.393i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.135i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 + 0.135i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.18067 - 0.216916i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.18067 - 0.216916i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.36 - 0.377i)T \) |
| 3 | \( 1 \) |
| 23 | \( 1 + (4.40 - 1.88i)T \) |
| good | 5 | \( 1 + 2.63iT - 5T^{2} \) |
| 7 | \( 1 - 3.76T + 7T^{2} \) |
| 11 | \( 1 - 0.443T + 11T^{2} \) |
| 13 | \( 1 + 3.89T + 13T^{2} \) |
| 17 | \( 1 + 5.41iT - 17T^{2} \) |
| 19 | \( 1 - 0.874T + 19T^{2} \) |
| 29 | \( 1 - 5.34T + 29T^{2} \) |
| 31 | \( 1 - 0.598iT - 31T^{2} \) |
| 37 | \( 1 - 8.26iT - 37T^{2} \) |
| 41 | \( 1 + 3.00T + 41T^{2} \) |
| 43 | \( 1 - 0.586T + 43T^{2} \) |
| 47 | \( 1 + 3.89iT - 47T^{2} \) |
| 53 | \( 1 - 3.21iT - 53T^{2} \) |
| 59 | \( 1 - 12.1iT - 59T^{2} \) |
| 61 | \( 1 + 12.2iT - 61T^{2} \) |
| 67 | \( 1 + 15.2T + 67T^{2} \) |
| 71 | \( 1 - 1.61iT - 71T^{2} \) |
| 73 | \( 1 - 14.9T + 73T^{2} \) |
| 79 | \( 1 - 10.9T + 79T^{2} \) |
| 83 | \( 1 + 11.6T + 83T^{2} \) |
| 89 | \( 1 - 13.2iT - 89T^{2} \) |
| 97 | \( 1 + 1.29iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30671714749057984644715187789, −9.228046429069353258470211274935, −8.216460036174910694641383207536, −7.71454628081413467867982979182, −6.69544450865029117385299826280, −5.28152768664630888055104635402, −4.98260347846937775707229940566, −4.22792596391100328407339960437, −2.66511313502475567344758077912, −1.41558351714019901587452885287,
1.77575298825013130248228094766, 2.67139055829489731322722509075, 3.91158723185927436445894408819, 4.75995425531173228336017185391, 5.76519047869566252269565866630, 6.67065003287792229281796949340, 7.50839735532205275465901000714, 8.272214293389117522757683832754, 9.778605793724578365498130720200, 10.63114586680702314333664192549