| L(s) = 1 | + (0.279 − 1.38i)2-s + (−1.84 − 0.775i)4-s − 1.27i·5-s + 2.49·7-s + (−1.58 + 2.33i)8-s + (−1.76 − 0.356i)10-s − 5.92·11-s − 2.46·13-s + (0.696 − 3.45i)14-s + (2.79 + 2.85i)16-s − 6.74i·17-s − 2.53·19-s + (−0.988 + 2.35i)20-s + (−1.65 + 8.20i)22-s + (−4.75 − 0.642i)23-s + ⋯ |
| L(s) = 1 | + (0.197 − 0.980i)2-s + (−0.921 − 0.387i)4-s − 0.570i·5-s + 0.941·7-s + (−0.562 + 0.827i)8-s + (−0.559 − 0.112i)10-s − 1.78·11-s − 0.684·13-s + (0.186 − 0.923i)14-s + (0.699 + 0.714i)16-s − 1.63i·17-s − 0.582·19-s + (−0.221 + 0.525i)20-s + (−0.352 + 1.75i)22-s + (−0.990 − 0.133i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.861 - 0.507i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.861 - 0.507i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.201509 + 0.739080i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.201509 + 0.739080i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.279 + 1.38i)T \) |
| 3 | \( 1 \) |
| 23 | \( 1 + (4.75 + 0.642i)T \) |
| good | 5 | \( 1 + 1.27iT - 5T^{2} \) |
| 7 | \( 1 - 2.49T + 7T^{2} \) |
| 11 | \( 1 + 5.92T + 11T^{2} \) |
| 13 | \( 1 + 2.46T + 13T^{2} \) |
| 17 | \( 1 + 6.74iT - 17T^{2} \) |
| 19 | \( 1 + 2.53T + 19T^{2} \) |
| 29 | \( 1 + 5.45T + 29T^{2} \) |
| 31 | \( 1 + 3.02iT - 31T^{2} \) |
| 37 | \( 1 + 4.92iT - 37T^{2} \) |
| 41 | \( 1 - 9.26T + 41T^{2} \) |
| 43 | \( 1 + 10.1T + 43T^{2} \) |
| 47 | \( 1 - 9.93iT - 47T^{2} \) |
| 53 | \( 1 - 2.08iT - 53T^{2} \) |
| 59 | \( 1 - 7.43iT - 59T^{2} \) |
| 61 | \( 1 + 2.14iT - 61T^{2} \) |
| 67 | \( 1 - 3.96T + 67T^{2} \) |
| 71 | \( 1 + 12.1iT - 71T^{2} \) |
| 73 | \( 1 + 4.45T + 73T^{2} \) |
| 79 | \( 1 - 3.65T + 79T^{2} \) |
| 83 | \( 1 - 3.03T + 83T^{2} \) |
| 89 | \( 1 + 5.81iT - 89T^{2} \) |
| 97 | \( 1 - 4.52iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.822670280924293670699637703330, −9.079307580583448213504476011726, −8.075973108318125256597194318095, −7.51762483077752435818228450138, −5.73439834625855353656064285096, −4.96953149347678134240570115446, −4.46057343914974544245163300654, −2.87074365479628340770688911932, −2.01990364053980621221588976065, −0.33303893203844001979588918530,
2.18239854242969755924763721580, 3.56513175405765792765661738575, 4.73516369509017725668850031399, 5.42881746039036009110300427316, 6.38399243188951561242790855077, 7.39777676915482987333937241012, 8.071948028624837227321197326423, 8.568130313652967382487418692217, 10.01328982622417149495462779462, 10.48349008159350464741950429602