| L(s) = 1 | + (−0.564 + 1.73i)2-s + (−0.809 + 0.587i)3-s + (−1.08 − 0.786i)4-s + (−0.564 − 1.73i)6-s + (1.41 + 1.02i)7-s + (−0.978 + 0.710i)8-s + (0.309 − 0.951i)9-s + (−0.384 − 3.29i)11-s + 1.33·12-s + (1.65 − 5.09i)13-s + (−2.58 + 1.87i)14-s + (−1.50 − 4.64i)16-s + (−2.26 − 6.97i)17-s + (1.47 + 1.07i)18-s + (−4.86 + 3.53i)19-s + ⋯ |
| L(s) = 1 | + (−0.399 + 1.22i)2-s + (−0.467 + 0.339i)3-s + (−0.541 − 0.393i)4-s + (−0.230 − 0.709i)6-s + (0.534 + 0.388i)7-s + (−0.345 + 0.251i)8-s + (0.103 − 0.317i)9-s + (−0.115 − 0.993i)11-s + 0.386·12-s + (0.459 − 1.41i)13-s + (−0.690 + 0.501i)14-s + (−0.377 − 1.16i)16-s + (−0.549 − 1.69i)17-s + (0.348 + 0.253i)18-s + (−1.11 + 0.811i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 + 0.449i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.893 + 0.449i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.477927 - 0.113524i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.477927 - 0.113524i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.809 - 0.587i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (0.384 + 3.29i)T \) |
| good | 2 | \( 1 + (0.564 - 1.73i)T + (-1.61 - 1.17i)T^{2} \) |
| 7 | \( 1 + (-1.41 - 1.02i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-1.65 + 5.09i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (2.26 + 6.97i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (4.86 - 3.53i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 8.35T + 23T^{2} \) |
| 29 | \( 1 + (4.48 + 3.25i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (0.00660 - 0.0203i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.907 + 0.659i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-2.96 + 2.15i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 1.96T + 43T^{2} \) |
| 47 | \( 1 + (-3.09 + 2.24i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (0.516 - 1.58i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (4.58 + 3.32i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-2.86 - 8.82i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 0.350T + 67T^{2} \) |
| 71 | \( 1 + (-1.40 - 4.31i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-8.20 - 5.95i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.792 + 2.43i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-4.96 - 15.2i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 14.5T + 89T^{2} \) |
| 97 | \( 1 + (-0.587 + 1.80i)T + (-78.4 - 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03285661455186640756573074257, −9.051806240404969220989378399354, −8.250738041477064745199962460180, −7.77684845786494362710031167238, −6.59915631279512062918900455233, −5.72247134570907226414408099777, −5.38627595000685385311298478995, −3.97681938375720365303114833736, −2.55451768952743685922020156351, −0.27932031088181049266957228683,
1.66722116742059515679923903070, 2.08705860702425948672266960918, 3.95328669914848895702221927249, 4.47296038461845617276906392136, 6.12394398955457934648617874508, 6.71801644777195787387974951792, 7.898154089105155391824565106831, 8.833499051529045038589154190347, 9.631811103661644742887558231525, 10.66482228764241946917961405496