Properties

Label 2-8208-1.1-c1-0-116
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.32·5-s − 2.77·7-s − 2.53·11-s + 0.745·13-s − 4.83·17-s + 19-s + 1.29·23-s + 6.07·25-s + 2.01·29-s − 1.93·31-s − 9.23·35-s − 1.83·37-s + 11.7·41-s − 5.64·43-s − 4.39·47-s + 0.707·49-s + 1.00·53-s − 8.42·55-s + 0.602·59-s + 4.18·61-s + 2.48·65-s − 1.92·67-s + 0.548·71-s − 5.91·73-s + 7.03·77-s − 8.96·79-s + 11.0·83-s + ⋯
L(s)  = 1  + 1.48·5-s − 1.04·7-s − 0.763·11-s + 0.206·13-s − 1.17·17-s + 0.229·19-s + 0.270·23-s + 1.21·25-s + 0.373·29-s − 0.348·31-s − 1.56·35-s − 0.300·37-s + 1.84·41-s − 0.860·43-s − 0.641·47-s + 0.101·49-s + 0.138·53-s − 1.13·55-s + 0.0784·59-s + 0.535·61-s + 0.307·65-s − 0.235·67-s + 0.0651·71-s − 0.692·73-s + 0.801·77-s − 1.00·79-s + 1.20·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - 3.32T + 5T^{2} \)
7 \( 1 + 2.77T + 7T^{2} \)
11 \( 1 + 2.53T + 11T^{2} \)
13 \( 1 - 0.745T + 13T^{2} \)
17 \( 1 + 4.83T + 17T^{2} \)
23 \( 1 - 1.29T + 23T^{2} \)
29 \( 1 - 2.01T + 29T^{2} \)
31 \( 1 + 1.93T + 31T^{2} \)
37 \( 1 + 1.83T + 37T^{2} \)
41 \( 1 - 11.7T + 41T^{2} \)
43 \( 1 + 5.64T + 43T^{2} \)
47 \( 1 + 4.39T + 47T^{2} \)
53 \( 1 - 1.00T + 53T^{2} \)
59 \( 1 - 0.602T + 59T^{2} \)
61 \( 1 - 4.18T + 61T^{2} \)
67 \( 1 + 1.92T + 67T^{2} \)
71 \( 1 - 0.548T + 71T^{2} \)
73 \( 1 + 5.91T + 73T^{2} \)
79 \( 1 + 8.96T + 79T^{2} \)
83 \( 1 - 11.0T + 83T^{2} \)
89 \( 1 + 10.4T + 89T^{2} \)
97 \( 1 - 16.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29768967612337460834491484175, −6.59963835976103464701565363364, −6.16167666280810530412538403514, −5.48119680239079329385491755616, −4.83082831689696252008195310376, −3.83144739891477382224664985174, −2.82858499885689268201405031371, −2.38154724079017977901233900583, −1.36273996462024888047406897890, 0, 1.36273996462024888047406897890, 2.38154724079017977901233900583, 2.82858499885689268201405031371, 3.83144739891477382224664985174, 4.83082831689696252008195310376, 5.48119680239079329385491755616, 6.16167666280810530412538403514, 6.59963835976103464701565363364, 7.29768967612337460834491484175

Graph of the $Z$-function along the critical line