L(s) = 1 | + (1.03 + 0.430i)3-s + (−2.16 − 0.554i)5-s + (−0.831 + 2.00i)7-s + (−1.22 − 1.22i)9-s + (2.50 − 1.03i)11-s + (−5.26 − 2.17i)13-s + (−2.01 − 1.50i)15-s + (−5.37 + 2.22i)17-s + (1.89 + 0.786i)19-s + (−1.72 + 1.72i)21-s + (−3.33 − 3.33i)23-s + (4.38 + 2.40i)25-s + (−2.03 − 4.91i)27-s + (−3.07 + 1.27i)29-s − 0.621i·31-s + ⋯ |
L(s) = 1 | + (0.599 + 0.248i)3-s + (−0.968 − 0.248i)5-s + (−0.314 + 0.758i)7-s + (−0.409 − 0.409i)9-s + (0.755 − 0.313i)11-s + (−1.45 − 0.604i)13-s + (−0.519 − 0.389i)15-s + (−1.30 + 0.540i)17-s + (0.435 + 0.180i)19-s + (−0.377 + 0.377i)21-s + (−0.694 − 0.694i)23-s + (0.876 + 0.480i)25-s + (−0.392 − 0.946i)27-s + (−0.571 + 0.236i)29-s − 0.111i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.917 + 0.397i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.917 + 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0395447 - 0.190796i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0395447 - 0.190796i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.16 + 0.554i)T \) |
| 41 | \( 1 + (6.40 - 0.196i)T \) |
good | 3 | \( 1 + (-1.03 - 0.430i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (0.831 - 2.00i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-2.50 + 1.03i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + (5.26 + 2.17i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 + (5.37 - 2.22i)T + (12.0 - 12.0i)T^{2} \) |
| 19 | \( 1 + (-1.89 - 0.786i)T + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (3.33 + 3.33i)T + 23iT^{2} \) |
| 29 | \( 1 + (3.07 - 1.27i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + 0.621iT - 31T^{2} \) |
| 37 | \( 1 + (5.98 + 5.98i)T + 37iT^{2} \) |
| 43 | \( 1 - 1.18T + 43T^{2} \) |
| 47 | \( 1 + (2.97 - 1.23i)T + (33.2 - 33.2i)T^{2} \) |
| 53 | \( 1 + (-3.00 + 7.25i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 - 8.81iT - 59T^{2} \) |
| 61 | \( 1 + (-1.18 - 1.18i)T + 61iT^{2} \) |
| 67 | \( 1 + (4.71 - 1.95i)T + (47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (3.30 + 7.97i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 - 7.49T + 73T^{2} \) |
| 79 | \( 1 + (-2.70 - 6.54i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (3.55 - 3.55i)T - 83iT^{2} \) |
| 89 | \( 1 + (-5.23 + 2.16i)T + (62.9 - 62.9i)T^{2} \) |
| 97 | \( 1 + (0.940 + 2.27i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.637605517730107133499736513665, −8.889444819553825143632745008409, −8.415324277528329082110776046094, −7.41076928599808599509110925362, −6.42878288483618921671134651101, −5.35078127428024159396532324309, −4.21347098895406609824341891509, −3.36952555049543642139357780695, −2.32323577209898171154418334089, −0.082392200469765516571056461442,
2.02540242851761837271923292741, 3.19661597549285870150062143397, 4.17450916145025525669769136964, 5.03868982343184128289544939941, 6.74098547252654816577796126200, 7.17308979518718962425332000986, 7.912934887211003157620814935427, 8.900878188460035518401617326329, 9.643149450821215686758794556363, 10.60061657909504677647313564239