L(s) = 1 | + (−1 − i)2-s + 2i·4-s + (−0.707 − 2.12i)5-s + (2 − 2i)8-s + (−2.12 − 2.12i)9-s + (−1.41 + 2.82i)10-s + (2.70 − 6.53i)13-s − 4·16-s + (3.12 + 7.53i)17-s + 4.24i·18-s + (4.24 − 1.41i)20-s + (−3.99 + 3i)25-s + (−9.24 + 3.82i)26-s + (−9.94 − 4.12i)29-s + (4 + 4i)32-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + i·4-s + (−0.316 − 0.948i)5-s + (0.707 − 0.707i)8-s + (−0.707 − 0.707i)9-s + (−0.447 + 0.894i)10-s + (0.750 − 1.81i)13-s − 16-s + (0.757 + 1.82i)17-s + 0.999i·18-s + (0.948 − 0.316i)20-s + (−0.799 + 0.600i)25-s + (−1.81 + 0.750i)26-s + (−1.84 − 0.765i)29-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 - 0.161i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.986 - 0.161i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0449842 + 0.554794i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0449842 + 0.554794i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 5 | \( 1 + (0.707 + 2.12i)T \) |
| 41 | \( 1 + (5 - 4i)T \) |
good | 3 | \( 1 + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (-2.70 + 6.53i)T + (-9.19 - 9.19i)T^{2} \) |
| 17 | \( 1 + (-3.12 - 7.53i)T + (-12.0 + 12.0i)T^{2} \) |
| 19 | \( 1 + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (9.94 + 4.12i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 7.07iT - 37T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + (33.2 - 33.2i)T^{2} \) |
| 53 | \( 1 + (13.3 + 5.53i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + (-1 + i)T - 61iT^{2} \) |
| 67 | \( 1 + (47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (4.24 + 4.24i)T + 73iT^{2} \) |
| 79 | \( 1 + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-10.1 - 4.19i)T + (62.9 + 62.9i)T^{2} \) |
| 97 | \( 1 + (-12.5 + 5.19i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.754316277066726498133719604753, −8.940905210511269011637845289626, −8.103051445841868760480756965802, −7.86308924091486569462354405431, −6.19063796034682818475558656604, −5.38394613941832508825305105956, −3.83853718245906082686026787274, −3.33968216282903685115868338427, −1.62166406360878672703992067504, −0.35014140510027979161256222762,
1.81880400826999813819066451839, 3.14967290578756440157427141341, 4.60539556236201893547162422777, 5.62104587519795432395626431725, 6.60290203001886536455832792613, 7.25749475498142304075922341956, 7.992539904489952718912734287048, 9.037227612110527517906374836279, 9.600133831025006584837537034552, 10.68460472893961800646836338648