L(s) = 1 | + (−1 − i)2-s + 2i·4-s + (0.707 + 2.12i)5-s + (2 − 2i)8-s + (2.12 + 2.12i)9-s + (1.41 − 2.82i)10-s + (1.29 + 0.535i)13-s − 4·16-s + (−1.12 + 0.464i)17-s − 4.24i·18-s + (−4.24 + 1.41i)20-s + (−3.99 + 3i)25-s + (−0.757 − 1.82i)26-s + (−0.0502 + 0.121i)29-s + (4 + 4i)32-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + i·4-s + (0.316 + 0.948i)5-s + (0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (0.447 − 0.894i)10-s + (0.358 + 0.148i)13-s − 16-s + (−0.271 + 0.112i)17-s − 0.999i·18-s + (−0.948 + 0.316i)20-s + (−0.799 + 0.600i)25-s + (−0.148 − 0.358i)26-s + (−0.00933 + 0.0225i)29-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.604 - 0.796i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.604 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.971562 + 0.482187i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.971562 + 0.482187i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 5 | \( 1 + (-0.707 - 2.12i)T \) |
| 41 | \( 1 + (5 - 4i)T \) |
good | 3 | \( 1 + (-2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + (-1.29 - 0.535i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 + (1.12 - 0.464i)T + (12.0 - 12.0i)T^{2} \) |
| 19 | \( 1 + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (0.0502 - 0.121i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 7.07iT - 37T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + (-33.2 + 33.2i)T^{2} \) |
| 53 | \( 1 + (0.636 - 1.53i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + (-1 + i)T - 61iT^{2} \) |
| 67 | \( 1 + (-47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-4.24 - 4.24i)T + 73iT^{2} \) |
| 79 | \( 1 + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-5.87 + 14.1i)T + (-62.9 - 62.9i)T^{2} \) |
| 97 | \( 1 + (-5.46 - 13.1i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30464502388729714713535588597, −9.798131547579435380531427873192, −8.775555028225713965811392554667, −7.84815217648235074215299815091, −7.10586591619712400780470258334, −6.26386159139235607476504093934, −4.77628926062613873580976542477, −3.67680782512726593512284788992, −2.60899578358174830009033706252, −1.56861856044304586754879065447,
0.71776496532625049942792730332, 1.93760267105659457790815019339, 3.91642553856862501581727837160, 4.95903764263936369286490873634, 5.83431391156546928501095862156, 6.70299853214957688907033703435, 7.58615650435958078512440556933, 8.569910459179866336918164738676, 9.136042038588808443257108453444, 9.863455155609521180402633453059