L(s) = 1 | + (0.363 + 1.36i)2-s − 2.89·3-s + (−1.73 + 0.993i)4-s + (2.03 + 0.918i)5-s + (−1.05 − 3.95i)6-s + 3.97i·7-s + (−1.98 − 2.01i)8-s + 5.35·9-s + (−0.514 + 3.12i)10-s + (−2.11 − 2.11i)11-s + (5.01 − 2.87i)12-s + 5.49i·13-s + (−5.42 + 1.44i)14-s + (−5.89 − 2.65i)15-s + (2.02 − 3.44i)16-s + 4.67i·17-s + ⋯ |
L(s) = 1 | + (0.257 + 0.966i)2-s − 1.66·3-s + (−0.867 + 0.496i)4-s + (0.911 + 0.410i)5-s + (−0.428 − 1.61i)6-s + 1.50i·7-s + (−0.703 − 0.710i)8-s + 1.78·9-s + (−0.162 + 0.986i)10-s + (−0.638 − 0.638i)11-s + (1.44 − 0.829i)12-s + 1.52i·13-s + (−1.45 + 0.385i)14-s + (−1.52 − 0.685i)15-s + (0.506 − 0.862i)16-s + 1.13i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.637 + 0.770i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.637 + 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.285755 - 0.607403i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.285755 - 0.607403i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.363 - 1.36i)T \) |
| 5 | \( 1 + (-2.03 - 0.918i)T \) |
| 41 | \( 1 + (3.43 + 5.40i)T \) |
good | 3 | \( 1 + 2.89T + 3T^{2} \) |
| 7 | \( 1 - 3.97iT - 7T^{2} \) |
| 11 | \( 1 + (2.11 + 2.11i)T + 11iT^{2} \) |
| 13 | \( 1 - 5.49iT - 13T^{2} \) |
| 17 | \( 1 - 4.67iT - 17T^{2} \) |
| 19 | \( 1 + (-4.23 - 4.23i)T + 19iT^{2} \) |
| 23 | \( 1 + (2.64 + 2.64i)T + 23iT^{2} \) |
| 29 | \( 1 + (5.09 + 5.09i)T + 29iT^{2} \) |
| 31 | \( 1 - 3.94iT - 31T^{2} \) |
| 37 | \( 1 + (3.93 + 3.93i)T + 37iT^{2} \) |
| 43 | \( 1 + (-5.85 + 5.85i)T - 43iT^{2} \) |
| 47 | \( 1 + 7.58T + 47T^{2} \) |
| 53 | \( 1 + 6.61iT - 53T^{2} \) |
| 59 | \( 1 + 6.92T + 59T^{2} \) |
| 61 | \( 1 + 6.04iT - 61T^{2} \) |
| 67 | \( 1 - 8.81T + 67T^{2} \) |
| 71 | \( 1 + (-7.87 - 7.87i)T + 71iT^{2} \) |
| 73 | \( 1 + (-4.97 - 4.97i)T + 73iT^{2} \) |
| 79 | \( 1 + (1.04 - 1.04i)T - 79iT^{2} \) |
| 83 | \( 1 + (1.36 + 1.36i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.94 + 4.94i)T + 89iT^{2} \) |
| 97 | \( 1 - 5.20iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80405204137818939205956928294, −9.878235273007713516369835898399, −9.113327548833509001794681342772, −8.128501121709414350951838355505, −6.81248248312464756013495464375, −6.23643705619147632787659017966, −5.56818954311463255767476084523, −5.23818450284954199886720417603, −3.79394959774049547557419911193, −1.98792119392067738828017524890,
0.41007926369414016226731649674, 1.32954698741867597330085417591, 3.07109579515074342973590107339, 4.58049214009721394960239349962, 5.10643391053482589043312754035, 5.74137592285831213446782251695, 6.93064081248926961468401193670, 7.82544256954630146203133816187, 9.619142057336568689025189048126, 9.858340405881037290471631325174