L(s) = 1 | + (−1.27 + 0.611i)2-s + 1.22·3-s + (1.25 − 1.55i)4-s + (1.86 + 1.23i)5-s + (−1.55 + 0.747i)6-s − 2.99i·7-s + (−0.643 + 2.75i)8-s − 1.50·9-s + (−3.13 − 0.435i)10-s + (−0.0849 + 0.0849i)11-s + (1.53 − 1.90i)12-s − 6.06i·13-s + (1.82 + 3.81i)14-s + (2.27 + 1.50i)15-s + (−0.862 − 3.90i)16-s + 6.38i·17-s + ⋯ |
L(s) = 1 | + (−0.901 + 0.432i)2-s + 0.705·3-s + (0.626 − 0.779i)4-s + (0.833 + 0.552i)5-s + (−0.636 + 0.305i)6-s − 1.13i·7-s + (−0.227 + 0.973i)8-s − 0.501·9-s + (−0.990 − 0.137i)10-s + (−0.0256 + 0.0256i)11-s + (0.441 − 0.550i)12-s − 1.68i·13-s + (0.488 + 1.01i)14-s + (0.588 + 0.389i)15-s + (−0.215 − 0.976i)16-s + 1.54i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.933 + 0.357i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.933 + 0.357i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.40871 - 0.260264i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40871 - 0.260264i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.27 - 0.611i)T \) |
| 5 | \( 1 + (-1.86 - 1.23i)T \) |
| 41 | \( 1 + (2.83 - 5.74i)T \) |
good | 3 | \( 1 - 1.22T + 3T^{2} \) |
| 7 | \( 1 + 2.99iT - 7T^{2} \) |
| 11 | \( 1 + (0.0849 - 0.0849i)T - 11iT^{2} \) |
| 13 | \( 1 + 6.06iT - 13T^{2} \) |
| 17 | \( 1 - 6.38iT - 17T^{2} \) |
| 19 | \( 1 + (-5.18 + 5.18i)T - 19iT^{2} \) |
| 23 | \( 1 + (-5.57 + 5.57i)T - 23iT^{2} \) |
| 29 | \( 1 + (0.521 - 0.521i)T - 29iT^{2} \) |
| 31 | \( 1 + 1.55iT - 31T^{2} \) |
| 37 | \( 1 + (-4.51 + 4.51i)T - 37iT^{2} \) |
| 43 | \( 1 + (-0.300 - 0.300i)T + 43iT^{2} \) |
| 47 | \( 1 + 4.09T + 47T^{2} \) |
| 53 | \( 1 + 9.00iT - 53T^{2} \) |
| 59 | \( 1 + 4.12T + 59T^{2} \) |
| 61 | \( 1 - 10.0iT - 61T^{2} \) |
| 67 | \( 1 - 6.34T + 67T^{2} \) |
| 71 | \( 1 + (2.90 - 2.90i)T - 71iT^{2} \) |
| 73 | \( 1 + (-0.672 + 0.672i)T - 73iT^{2} \) |
| 79 | \( 1 + (-9.02 - 9.02i)T + 79iT^{2} \) |
| 83 | \( 1 + (-7.89 + 7.89i)T - 83iT^{2} \) |
| 89 | \( 1 + (4.98 - 4.98i)T - 89iT^{2} \) |
| 97 | \( 1 + 7.96iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12727273692234047173490229017, −9.330631099638103527789837709973, −8.431123966782653684196011233589, −7.73469571214968118532626320597, −6.93245852419195730349447615070, −6.02709965174364275524076363220, −5.11273018205915447298440234776, −3.33155427235586771523554991066, −2.50193213195145484479976243969, −0.934490985596740071728981020137,
1.52677410696503385520559306812, 2.46479894114571090614474975136, 3.35769402008893076756676442991, 4.99907233937827459960365161060, 5.96087102624457090932047844488, 7.07359191704428310758425773984, 8.045439818786376201297933106134, 8.989140332095392788314643894083, 9.310659445069387889902992900596, 9.731442976343555399856068856823