L(s) = 1 | + (−1.36 + 0.363i)2-s + 2.89·3-s + (1.73 − 0.993i)4-s + (2.03 − 0.918i)5-s + (−3.95 + 1.05i)6-s + 3.97i·7-s + (−2.01 + 1.98i)8-s + 5.35·9-s + (−2.45 + 1.99i)10-s + (2.11 − 2.11i)11-s + (5.01 − 2.87i)12-s − 5.49i·13-s + (−1.44 − 5.42i)14-s + (5.89 − 2.65i)15-s + (2.02 − 3.44i)16-s − 4.67i·17-s + ⋯ |
L(s) = 1 | + (−0.966 + 0.257i)2-s + 1.66·3-s + (0.867 − 0.496i)4-s + (0.911 − 0.410i)5-s + (−1.61 + 0.428i)6-s + 1.50i·7-s + (−0.710 + 0.703i)8-s + 1.78·9-s + (−0.775 + 0.631i)10-s + (0.638 − 0.638i)11-s + (1.44 − 0.829i)12-s − 1.52i·13-s + (−0.385 − 1.45i)14-s + (1.52 − 0.685i)15-s + (0.506 − 0.862i)16-s − 1.13i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.159i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 - 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.13147 + 0.171298i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.13147 + 0.171298i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.363i)T \) |
| 5 | \( 1 + (-2.03 + 0.918i)T \) |
| 41 | \( 1 + (3.43 - 5.40i)T \) |
good | 3 | \( 1 - 2.89T + 3T^{2} \) |
| 7 | \( 1 - 3.97iT - 7T^{2} \) |
| 11 | \( 1 + (-2.11 + 2.11i)T - 11iT^{2} \) |
| 13 | \( 1 + 5.49iT - 13T^{2} \) |
| 17 | \( 1 + 4.67iT - 17T^{2} \) |
| 19 | \( 1 + (4.23 - 4.23i)T - 19iT^{2} \) |
| 23 | \( 1 + (-2.64 + 2.64i)T - 23iT^{2} \) |
| 29 | \( 1 + (5.09 - 5.09i)T - 29iT^{2} \) |
| 31 | \( 1 - 3.94iT - 31T^{2} \) |
| 37 | \( 1 + (3.93 - 3.93i)T - 37iT^{2} \) |
| 43 | \( 1 + (5.85 + 5.85i)T + 43iT^{2} \) |
| 47 | \( 1 - 7.58T + 47T^{2} \) |
| 53 | \( 1 - 6.61iT - 53T^{2} \) |
| 59 | \( 1 - 6.92T + 59T^{2} \) |
| 61 | \( 1 - 6.04iT - 61T^{2} \) |
| 67 | \( 1 + 8.81T + 67T^{2} \) |
| 71 | \( 1 + (7.87 - 7.87i)T - 71iT^{2} \) |
| 73 | \( 1 + (-4.97 + 4.97i)T - 73iT^{2} \) |
| 79 | \( 1 + (-1.04 - 1.04i)T + 79iT^{2} \) |
| 83 | \( 1 + (-1.36 + 1.36i)T - 83iT^{2} \) |
| 89 | \( 1 + (4.94 - 4.94i)T - 89iT^{2} \) |
| 97 | \( 1 + 5.20iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.909491281355468675265895020818, −8.983158809404379486131384315034, −8.768239247882958527019121614429, −8.205752613621150007516464557322, −7.05877931107237253718951417962, −5.95840949240079090170271298267, −5.20853301850136771082022902565, −3.18366252961165102870345164216, −2.54477095369799700338690767465, −1.49848178725229381037836397661,
1.65342465768356427571828918287, 2.18729947629363250848021375777, 3.62170770314345184756496614151, 4.20548813252853670763695993938, 6.50101573587516653855822378587, 7.02164218739702933040663624205, 7.69994155376899420754304902299, 8.837808469187750876284719334401, 9.279447693533504294937860865740, 9.973409728714131480745176529579