L(s) = 1 | + (0.850 − 1.12i)2-s + (−1.73 − 1.73i)3-s + (−0.552 − 1.92i)4-s + (2.10 − 0.767i)5-s + (−3.43 + 0.484i)6-s + (1.19 − 1.19i)7-s + (−2.64 − 1.01i)8-s + 3.01i·9-s + (0.918 − 3.02i)10-s − 4.02i·11-s + (−2.37 + 4.29i)12-s + (−0.809 + 0.809i)13-s + (−0.332 − 2.36i)14-s + (−4.97 − 2.31i)15-s + (−3.38 + 2.12i)16-s + (−0.339 − 0.339i)17-s + ⋯ |
L(s) = 1 | + (0.601 − 0.798i)2-s + (−1.00 − 1.00i)3-s + (−0.276 − 0.961i)4-s + (0.939 − 0.343i)5-s + (−1.40 + 0.197i)6-s + (0.450 − 0.450i)7-s + (−0.933 − 0.357i)8-s + 1.00i·9-s + (0.290 − 0.956i)10-s − 1.21i·11-s + (−0.685 + 1.23i)12-s + (−0.224 + 0.224i)13-s + (−0.0889 − 0.631i)14-s + (−1.28 − 0.596i)15-s + (−0.847 + 0.531i)16-s + (−0.0823 − 0.0823i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.926 - 0.377i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.926 - 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.310152 + 1.58433i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.310152 + 1.58433i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.850 + 1.12i)T \) |
| 5 | \( 1 + (-2.10 + 0.767i)T \) |
| 41 | \( 1 - T \) |
good | 3 | \( 1 + (1.73 + 1.73i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1.19 + 1.19i)T - 7iT^{2} \) |
| 11 | \( 1 + 4.02iT - 11T^{2} \) |
| 13 | \( 1 + (0.809 - 0.809i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.339 + 0.339i)T + 17iT^{2} \) |
| 19 | \( 1 - 4.20T + 19T^{2} \) |
| 23 | \( 1 + (1.29 + 1.29i)T + 23iT^{2} \) |
| 29 | \( 1 - 4.18iT - 29T^{2} \) |
| 31 | \( 1 + 5.69iT - 31T^{2} \) |
| 37 | \( 1 + (-4.60 - 4.60i)T + 37iT^{2} \) |
| 43 | \( 1 + (-0.412 - 0.412i)T + 43iT^{2} \) |
| 47 | \( 1 + (8.15 - 8.15i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.269 + 0.269i)T - 53iT^{2} \) |
| 59 | \( 1 - 5.44T + 59T^{2} \) |
| 61 | \( 1 - 0.729T + 61T^{2} \) |
| 67 | \( 1 + (9.31 - 9.31i)T - 67iT^{2} \) |
| 71 | \( 1 + 1.57iT - 71T^{2} \) |
| 73 | \( 1 + (-5.88 + 5.88i)T - 73iT^{2} \) |
| 79 | \( 1 - 13.9T + 79T^{2} \) |
| 83 | \( 1 + (-3.59 - 3.59i)T + 83iT^{2} \) |
| 89 | \( 1 + 6.99iT - 89T^{2} \) |
| 97 | \( 1 + (9.75 + 9.75i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.977915112030912225535731147831, −9.166517236759108335720997587010, −7.991146745935633392151784307214, −6.77561470763104831811506512739, −6.00919536329552849536565010011, −5.43936314189062766315084270849, −4.49001990479266037950876109020, −2.96402925899104675959527767263, −1.61966283799048386503029633588, −0.77736942945106426674362120361,
2.28510781322098207478916255164, 3.73956410831653032883792576968, 4.94197184378354857677661283963, 5.22854556940186782768306729850, 6.11502458654967449495801670392, 6.98000853516536213242316242978, 7.979745520290617164092928376345, 9.276453182582220434284895000932, 9.793347585408345840697807802440, 10.64826341989030520089551957210