L(s) = 1 | + (−1.35 + 0.401i)2-s + 2.73i·3-s + (1.67 − 1.08i)4-s + (−2.07 + 0.834i)5-s + (−1.10 − 3.71i)6-s + 0.506·7-s + (−1.83 + 2.15i)8-s − 4.50·9-s + (2.47 − 1.96i)10-s + (−0.975 − 0.975i)11-s + (2.98 + 4.59i)12-s − 0.970·13-s + (−0.686 + 0.203i)14-s + (−2.28 − 5.68i)15-s + (1.62 − 3.65i)16-s − 2.65·17-s + ⋯ |
L(s) = 1 | + (−0.958 + 0.284i)2-s + 1.58i·3-s + (0.838 − 0.544i)4-s + (−0.927 + 0.373i)5-s + (−0.449 − 1.51i)6-s + 0.191·7-s + (−0.649 + 0.760i)8-s − 1.50·9-s + (0.783 − 0.621i)10-s + (−0.294 − 0.294i)11-s + (0.861 + 1.32i)12-s − 0.269·13-s + (−0.183 + 0.0543i)14-s + (−0.590 − 1.46i)15-s + (0.406 − 0.913i)16-s − 0.644·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.451 + 0.892i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.451 + 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0599865 - 0.0368795i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0599865 - 0.0368795i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.35 - 0.401i)T \) |
| 5 | \( 1 + (2.07 - 0.834i)T \) |
| 41 | \( 1 + (5.89 - 2.49i)T \) |
good | 3 | \( 1 - 2.73iT - 3T^{2} \) |
| 7 | \( 1 - 0.506T + 7T^{2} \) |
| 11 | \( 1 + (0.975 + 0.975i)T + 11iT^{2} \) |
| 13 | \( 1 + 0.970T + 13T^{2} \) |
| 17 | \( 1 + 2.65T + 17T^{2} \) |
| 19 | \( 1 + (0.779 + 0.779i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.0275 - 0.0275i)T - 23iT^{2} \) |
| 29 | \( 1 + (5.29 + 5.29i)T + 29iT^{2} \) |
| 31 | \( 1 + 5.80iT - 31T^{2} \) |
| 37 | \( 1 + (0.173 - 0.173i)T - 37iT^{2} \) |
| 43 | \( 1 + (-2.73 - 2.73i)T + 43iT^{2} \) |
| 47 | \( 1 + 2.79iT - 47T^{2} \) |
| 53 | \( 1 - 1.35T + 53T^{2} \) |
| 59 | \( 1 - 10.0T + 59T^{2} \) |
| 61 | \( 1 - 7.27iT - 61T^{2} \) |
| 67 | \( 1 - 3.00iT - 67T^{2} \) |
| 71 | \( 1 + (0.285 + 0.285i)T + 71iT^{2} \) |
| 73 | \( 1 + (-9.38 + 9.38i)T - 73iT^{2} \) |
| 79 | \( 1 + (-5.35 + 5.35i)T - 79iT^{2} \) |
| 83 | \( 1 + (2.48 - 2.48i)T - 83iT^{2} \) |
| 89 | \( 1 + (-8.00 - 8.00i)T + 89iT^{2} \) |
| 97 | \( 1 + 5.38T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.991698938452920627287303248252, −9.356393129947178723490378976397, −8.465270891040281716467404727865, −7.81617367768487653021512358588, −6.76139302393208269181460330081, −5.64265374614732062711005266529, −4.63483723845441655207426186121, −3.68284666798405707972400631888, −2.52228658487763574044197161308, −0.04892491152279590931348767519,
1.31936139821019626093579791029, 2.35195611884676818782108313095, 3.63743064636728921617867993823, 5.19586075755976441201380863579, 6.62381157549199339939186838004, 7.12802166057568206420392100156, 7.889334289463982751482133704142, 8.452174530874722123175298287764, 9.254533672353784350695727367539, 10.54808092341992079929804626428