Properties

Label 2-820-164.11-c1-0-40
Degree $2$
Conductor $820$
Sign $0.775 + 0.631i$
Analytic cond. $6.54773$
Root an. cond. $2.55885$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.784 − 1.17i)2-s + (−1.17 + 2.84i)3-s + (−0.769 + 1.84i)4-s + (−0.453 + 0.891i)5-s + (4.26 − 0.843i)6-s + (0.0665 + 0.277i)7-s + (2.77 − 0.543i)8-s + (−4.56 − 4.56i)9-s + (1.40 − 0.164i)10-s + (2.73 − 3.19i)11-s + (−4.33 − 4.35i)12-s + (−2.05 − 3.35i)13-s + (0.273 − 0.295i)14-s + (−1.99 − 2.33i)15-s + (−2.81 − 2.84i)16-s + (−0.281 − 3.57i)17-s + ⋯
L(s)  = 1  + (−0.554 − 0.832i)2-s + (−0.679 + 1.63i)3-s + (−0.384 + 0.923i)4-s + (−0.203 + 0.398i)5-s + (1.74 − 0.344i)6-s + (0.0251 + 0.104i)7-s + (0.981 − 0.191i)8-s + (−1.52 − 1.52i)9-s + (0.444 − 0.0520i)10-s + (0.823 − 0.964i)11-s + (−1.25 − 1.25i)12-s + (−0.571 − 0.931i)13-s + (0.0731 − 0.0790i)14-s + (−0.515 − 0.603i)15-s + (−0.704 − 0.710i)16-s + (−0.0681 − 0.866i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.775 + 0.631i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.775 + 0.631i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(820\)    =    \(2^{2} \cdot 5 \cdot 41\)
Sign: $0.775 + 0.631i$
Analytic conductor: \(6.54773\)
Root analytic conductor: \(2.55885\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{820} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 820,\ (\ :1/2),\ 0.775 + 0.631i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.612575 - 0.217744i\)
\(L(\frac12)\) \(\approx\) \(0.612575 - 0.217744i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.784 + 1.17i)T \)
5 \( 1 + (0.453 - 0.891i)T \)
41 \( 1 + (6.33 - 0.910i)T \)
good3 \( 1 + (1.17 - 2.84i)T + (-2.12 - 2.12i)T^{2} \)
7 \( 1 + (-0.0665 - 0.277i)T + (-6.23 + 3.17i)T^{2} \)
11 \( 1 + (-2.73 + 3.19i)T + (-1.72 - 10.8i)T^{2} \)
13 \( 1 + (2.05 + 3.35i)T + (-5.90 + 11.5i)T^{2} \)
17 \( 1 + (0.281 + 3.57i)T + (-16.7 + 2.65i)T^{2} \)
19 \( 1 + (1.97 + 1.20i)T + (8.62 + 16.9i)T^{2} \)
23 \( 1 + (-6.89 - 5.00i)T + (7.10 + 21.8i)T^{2} \)
29 \( 1 + (-0.343 + 4.36i)T + (-28.6 - 4.53i)T^{2} \)
31 \( 1 + (-1.94 + 5.98i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (-1.20 - 3.71i)T + (-29.9 + 21.7i)T^{2} \)
43 \( 1 + (-0.661 - 4.17i)T + (-40.8 + 13.2i)T^{2} \)
47 \( 1 + (-0.360 + 1.50i)T + (-41.8 - 21.3i)T^{2} \)
53 \( 1 + (9.44 + 0.743i)T + (52.3 + 8.29i)T^{2} \)
59 \( 1 + (-2.88 + 3.96i)T + (-18.2 - 56.1i)T^{2} \)
61 \( 1 + (-0.174 + 1.10i)T + (-58.0 - 18.8i)T^{2} \)
67 \( 1 + (-4.20 + 3.59i)T + (10.4 - 66.1i)T^{2} \)
71 \( 1 + (0.838 + 0.716i)T + (11.1 + 70.1i)T^{2} \)
73 \( 1 + (-6.86 + 6.86i)T - 73iT^{2} \)
79 \( 1 + (1.64 + 0.683i)T + (55.8 + 55.8i)T^{2} \)
83 \( 1 - 13.5iT - 83T^{2} \)
89 \( 1 + (6.38 - 1.53i)T + (79.2 - 40.4i)T^{2} \)
97 \( 1 + (-12.3 + 10.5i)T + (15.1 - 95.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09343580932413464313466856467, −9.580982253291079860313525972159, −8.882759903839022115750398082621, −7.890919351283160770173841985514, −6.60635420227499012149155252183, −5.40501241096032525626720208691, −4.56902017240331092091873976960, −3.55286702647387517994042200173, −2.88676525569048851882340296427, −0.50907773948107134774400566282, 1.13440031348791535111182799722, 2.01558977100948371701316227435, 4.40825994762796957647183517017, 5.27440376411887013695987173795, 6.46329861865527369425041940342, 6.84217635011355601723375061821, 7.48120229656406291679545853143, 8.513820234512480197770496724318, 9.078202695192845297702987066357, 10.35220889043189046503151505791

Graph of the $Z$-function along the critical line